About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 592971, 11 pages
http://dx.doi.org/10.1155/2013/592971
Research Article

Calculation of the Absorption Cross Sections of Some Molecules from GEISA Database at the Wavelengths of Isotopically Different CO2 Lasers

1Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russia
2Novosibirsk State University, Novosibirsk 630090, Russia

Received 8 July 2013; Accepted 19 September 2013

Academic Editors: J. A. Lopes and Y. van der Burgt

Copyright © 2013 Asylkhan Rakhymzhan and Alexey Chichinin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Weitkamp, Lidar Range-Resolved Optical Remote Sencing of the Atmosphere, Springer Science and Business Media Inc., 2005.
  2. B. I. Vasil'ev and O. M. Mannoun, “IR differential-absorption lidars for ecological monitoring of the environment,” Quantum Electronics, vol. 36, no. 9, pp. 801–820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Quagliano, P. O. Stoutland, R. R. Petrin et al., “Quantitative chemical identification of four gases in remote infrared (9–11 μm) differential absorption lidar experiments,” Applied Optics, vol. 36, no. 9, pp. 1915–1927, 1997. View at Scopus
  4. S. Lundqvist, C. O. Falt, U. Persson, B. Marthinsson, and S. T. Eng, “Air pollution monitoring with a Q-switched CO2-laser lidar using heterodyne detection,” Applied Optics, vol. 20, no. 14, pp. 2534–2538, 1981. View at Scopus
  5. U. Persson, S. Lundqvist, B. Marthinsson, and S. T. Eng, “Computerautomated CO2-laser long-path absorption system for air quality monitoring in the working environment,” Applied Optics, vol. 23, no. 7, pp. 998–1002, 1984. View at Scopus
  6. W. Schnell and G. Fischer, “Carbon dioxide laser absorption coefficients of various air pollutants,” Applied Optics, vol. 14, no. 9, pp. 2058–2059, 1975. View at Scopus
  7. A. Mayer, J. Comera, H. Charpentier, and C. Jaussaud, “Absorption coefficients of various pollutant gases at CO2 laser wavelengths, application to the remote sensing of those pollutants: errata,” Applied Optics, vol. 17, no. 3, pp. 391–393, 1978. View at Scopus
  8. A. Pal, C. D. Clark, M. Sigman, and D. K. Killinger, “Differential absorption lidar CO2 laser system for remote sensing of TATP related gases,” Applied Optics, vol. 48, no. 4, pp. B145–B150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. I. Arshinov, M. K. Arshinov, V. V. Nevdakh, M.-Y. Perrin, A. Soufiani, and V. V. Yasnov, “Accuracy in determination of the temperature and partial pressure of CO2 in CO2:N2:H2O:NO2 mixtures by multiple-frequency laser probing,” Journal of Applied Spectroscopy, vol. 74, no. 6, pp. 903–909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Hamza, M. H. S. El-Ahl, and A. M. Hamza, “New laser system for sensitive remote sensing of ammonia in human breath,” in Proceedings of the Air Monitoring and Detection of Chemical and Biological Agents II, vol. 3855 of Proceedings of SPIE, pp. 28–33, September 1999. View at Scopus
  11. L. Fiorani, F. Colao, and A. Palucci, “Measurement of Mount Etna plume by CO2-laser-based lidar,” Optics Letters, vol. 34, no. 6, pp. 800–802, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Fiorani, F. Colao, A. Palucci, D. Poreh, A. Aiuppa, and G. Giudice, “First-time lidar measurement of water vapor flux in a volcanic plume,” Optics Communications, vol. 284, no. 5, pp. 1295–1298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. P. Geiko and A. Tikhomirov, “Remote measurement of chemical warfare agents by differential absorption CO2 lidar,” Optical Memory and Neural Networks, vol. 20, no. 1, pp. 71–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. E. M. Telles, H. Odashima, L. R. Zink, and K. M. Evenson, “Optically pumped FIR laser lines from CH3OH: new laser lines, frequency measurements, and assignments,” Journal of Molecular Spectroscopy, vol. 195, no. 2, pp. 360–366, 1999. View at Scopus
  15. C. Bellecci, M. Francucci, P. Gaudio et al., “Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm,” Applied Physics B, vol. 87, no. 2, pp. 373–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Gaudio, M. Gelfusa, I. Lupelli et al., “First open field measurements with a portable CO2 lidar/dial system for early forest fires detection,” in Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Jacquinet-Husson, L. Crepeau, R. Armante et al., “The 2009 edition of the GEISA spectroscopic database,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 112, no. 15, pp. 2395–2445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. F. Chernogor and A. S. Rashkevich, “Results of en-route monitoring of the laser gas polluting impurities in the atmosphere,” Eastern European Journal of Enterprise Technologies, vol. 52, article 57, 1987.
  19. K. Fox, “Strengths of the SF6 transitions pumped by a CO2 laser,” Optics Communications, vol. 19, no. 3, pp. 397–400, 1976. View at Scopus
  20. J. L. Lyman, R. G. Anderson, R. A. Fisher, and B. J. Feldman, “Absorption of pulsed CO2-laser radiation by SF6 at 140 K,” Optics Letters, vol. 3, no. 6, pp. 238–240, 1978. View at Scopus
  21. H. Kariminezhad, P. Parvin, F. Borna, and A. Bavali, “SF6 leak detection of high-voltage installations using TEA-CO2 laser-based DIAL,” Optics and Lasers in Engineering, vol. 48, no. 4, pp. 491–499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Persson, B. Marthinsson, J. Johansson, and S. T. Eng, “Temperature and pressure dependence of NH3 and C2H4 absorption cross sections at CO2 laser wavelengths,” Applied Optics, vol. 19, no. 10, pp. 1711–1715, 1980. View at Scopus
  23. J. N. Olsen, “Laser-initiated channels for ion transport: CO2-laser absorption and heating of NH3 and C2H4 gases,” Journal of Applied Physics, vol. 52, no. 5, pp. 3279–3285, 1981. View at Publisher · View at Google Scholar · View at Scopus
  24. R. R. Patty, G. M. Russwurm, W. A. McClenny, and D. R. Morgan, “CO2 laser absorption coefficients for determining ambient levels of O3, NH3, and C2H4,” Applied Optics, vol. 13, no. 12, pp. 2850–2854, 1974. View at Scopus
  25. A. P. Force, D. K. Killinger, W. E. DeFeo, and N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Applied Optics, vol. 24, no. 17, pp. 2837–2841, 1985. View at Scopus
  26. Y. Zhao, “Line-pair selections for remote sensing of atmospheric ammonia by use of a coherent CO2 differential absorption lidar system,” Applied Optics, vol. 39, no. 6, pp. 997–1007, 2000. View at Scopus
  27. B. D. Green and J. I. Steinfeld, “Absorption coefficients for fourteen gases at CO2-laser frequencies,” Applied Optics, vol. 15, p. 1688, 1975.
  28. L. T. Molina and W. B. Grant, “FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases—implications for laser remote sensing,” Applied Optics, vol. 23, no. 21, pp. 3893–3900, 1983. View at Scopus
  29. N. Menyuk, D. K. Killinger, and W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Applied Optics, vol. 21, no. 12, pp. 2275–2286, 1982. View at Scopus
  30. J. S. Ryan, M. H. Hubert, and R. A. Crane, “Water vapor absorption at isotopic CO2 laser wavelengths,” Applied Optics, vol. 22, no. 5, pp. 711–717, 1983. View at Scopus
  31. H. Ahlberg, S. Lundqvist, and S. T. Eng, “Absorption coefficients of chlorine-dioxide 12C1802 laser wavelengths: applications to remote monitoring in the working environment,” Applied Optics, vol. 23, no. 17, pp. 2902–2905, 1984. View at Scopus
  32. F. Allario and R. K. Seals Jr., “Measurements of NH3 absorption coefficients with a 13C16O2 laser,” Applied Optics, vol. 14, no. 9, pp. 2229–2233, 1975. View at Scopus
  33. Z. Zelinger, I. Jancik, and P. Engst, “Measurement of the NH3, CCl2F2, CHClF2, CFCl3, and CClF3 absorption coefficients at isotopic 13C16O2 laser wavelengths by photoacoustic spectroscopy,” Applied Optics, vol. 31, p. 6974, 1992.
  34. D. Pereira, A. Scalabrin, G. P. Galvão, and K. M. Evenson, “13CD3OH and 12CD3OH optically pumped by a13CO2 laser: observations and assignments of FIR laser lines,” International Journal of Infrared and Millimeter Waves, vol. 13, no. 4, pp. 497–506, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. L. F. L. Costa, J. C. S. Moraes, F. C. Cruz, R. C. Viscovini, and D. Pereira, “Infrared and far-infrared spectroscopy of 13CH3OH: teraHertz laser lines and assignments,” Journal of Molecular Spectroscopy, vol. 241, no. 2, pp. 151–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. L. F. L. Costa, J. C. S. Moraes, F. C. Cruz, R. C. Viscovini, and D. Pereira, “CH3OH optically pumped by a 13CO2 laser: new laser lines and assignments,” Applied Physics B, vol. 86, no. 4, pp. 703–706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. C. Viscovini, J. C. S. Moraes, L. F. L. Costa, F. C. Cruz, and D. Pereira, “DCOOD optically pumped by a 13CO2 laser: new terahertz laser lines,” Applied Physics B, vol. 91, no. 3-4, pp. 517–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Petersen and G. Duxbury, “Observation and assignment of submillimetre laser lines from CH3OH pumped by isotopic CO2 lasers,” Applied Physics B, vol. 27, no. 1, pp. 19–25, 1982. View at Publisher · View at Google Scholar · View at Scopus
  39. J. C. Petersen and G. Duxbury, “Submillimetre laser lines from CH3OH pumped by a13C18O2 pump laser: observations and assignments,” Applied Physics B, vol. 34, no. 1, pp. 17–21, 1984. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Freed, L. C. Bradley, and R. G. O'Donnell, “Absolute frequencies of lasing transitions in seven CO2 isotopic species,” IEEE Journal of Quantum Electronics, vol. 16, no. 11, pp. 1195–1206, 1980. View at Scopus