About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 613218, 9 pages
http://dx.doi.org/10.1155/2013/613218
Research Article

Stability Indicating HPTLC Method for Analysis of Rifaximin in Pharmaceutical Formulations and an Application to Acidic Degradation Kinetic Study

1Department of Quality Assurance, Anand Pharmacy College, Near Town Hall, Anand, Gujarat 388 001, India
2Quality Assurance and Pharmaceutical Chemistry Department, Anand Pharmacy College, Near Town Hall, Anand, Gujarat 388 000, India

Received 16 June 2013; Accepted 26 July 2013

Academic Editors: Z. Aydogmus, E. Billiot, E. Lodyga-Chruscinska, and J. J. Santana-Rodríguez

Copyright © 2013 Kalpana G. Patel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. J. O. Maryadele, An Encyclopedia of Chemicals, Drug and Biologicals, The Merck Index, Division of Merck and Co. Inc., Merck Research Laboratories, White house Station, NJ, USA, 14th edition, 2006.
  2. N. R. Rao, R. M. Vali, B. Ramachandra, and P. K. Maurya, “Rapid determination of rifaximin on dried blood spots by LC-ESI-MS,” Biomedical Chromatography, vol. 25, no. 11, pp. 1201–1207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. I. C. H. guideline, “Stability testing of new drug substances and products (Q1AR2),” in Proceedings of the International Conference on Harmonization, Food and Drug Administration, Geneva, switzerland, 2003.
  4. H. L. DuPont, “Therapy for and prevention of traveler's diarrhea,” Clinical Infectious Diseases, vol. 45, 1, pp. 78–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. N. M. Bass, K. D. Mullen, A. Sanyal et al., “Rifaximin treatment in hepatic encephalopathy,” The New England Journal of Medicine, vol. 362, no. 12, pp. 1071–1081, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Sudha, K. Anandakumar, P. V. Hemalatha, V. R. Ravikumar, and R. Radhakrishnan, “Spectrophotometric estimation methods for rifaximin in tablet dosage form,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 1, pp. 43–46, 2010. View at Scopus
  7. N. . Bidyut, P. Amrutansu, and A. Mathrusri, “Spectrophotometric estimation of rifaximin in pure and tablet dosage form,” International Journal of Pharmacy and Technology, vol. 2, no. 4, pp. 1098–1104, 2010.
  8. T. Sudha, P. V. Hemalatha, V. R. Ravikumar, R. Jothi, and M. Radhakrishnan, “Development and validation of RP-HPLC method for the estimation of rifaximin in bulk and in tablet dosage form,” Asian Journal of Pharmaceutical and Clinical Research, vol. 2, no. 4, pp. 112–116, 2009. View at Scopus
  9. R. N. Rao, D. D. Shinde, and S. B. Agawane, “Rapid determination of rifaximin in rat serum and urine by direct injection on to a shielded hydrophobic stationary phase by HPLC,” Biomedical Chromatography, vol. 23, no. 6, pp. 563–567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Annapurna, B. S. PavanKumar, and B. Venkatesh, “Development and validation of a stability-indicating high performance liquid chromatographic assay for rifaximin in bulk and pharmaceutical dosage forms,” Drug Invention Today, vol. 4, pp. 430–434, 2012.
  11. X. Zhang, J. Duan, K. Li, L. Zhou, and S. Zhai, “Sensitive quantification of rifaximin in human plasma by liquid chromatography-tandem mass spectrometry,” Journal of Chromatography B, vol. 850, no. 1-2, pp. 348–355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. B. R. Challa, M. R. Kotaiah, and B. R. Chandu, “HPLC method for determination of rifaximin in human plasma using tandem mass spectrometry detection,” East and Central African Journal of Pharmaceutical Sciences, vol. 13, pp. 78–84, 2010.
  13. M. Bakshi and S. Singh, “Development of validated stability indicating assay methods—critical review,” Journal of Pharmaceutical and Biomedical Analysis, vol. 28, no. 6, pp. 1011–1040, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. Motwani, R. K. Khar, F. J. Ahmad, S. Chopra, K. Kohli, and S. Talegaonkar, “Application of a validated stability-indicating densitometric thin-layer chromatographic method to stress degradation studies on moxifloxacin,” Analytica Chimica Acta, vol. 582, no. 1, pp. 75–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Kaul, H. Agrawal, B. Patil, A. Kakad, and S. R. Dhaneshwar, “Application of stability-indicating HPTLC method for quantitative determination of metadoxine in pharmaceutical dosage form,” II Farmaco, vol. 60, no. 4, pp. 351–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Venkatachalam and V. S. Chatterjee, “Stability-indicating high performance thin layer chromatography determination of paroxetine hydrochloride in bulk drug and pharmaceutical formulations,” Analytica Chimica Acta, vol. 598, no. 2, pp. 312–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. I. A. Naguib and M. Abdelkawy, “Development and validation of stability indicating HPLC and HPTLC methods for determination of sulpiride and mebeverine hydrochloride in combination,” European Journal of Medicinal Chemistry, vol. 45, no. 9, pp. 3719–3725, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Kaul, H. Agrawal, A. R. Paradkar, and K. R. Mahadik, “Stability indicating high-performance thin-layer chromatographic determination of nelfinavir mesylate as bulk drug and in pharmaceutical dosage form,” Analytica Chimica Acta, vol. 502, no. 1, pp. 31–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. I. C. H. guideline, “Validation of analytical procedures: methodology (Q2R1),” in Proceedings of the International Conference on Harmonization, Food and Drug Administration, Geneva, switzerland, 2005.