About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 637219, 7 pages
http://dx.doi.org/10.1155/2013/637219
Research Article

Electronic Structure of 2H-Tetraphenylporphyrin at Fe/Si (100) Interface

1Synchrotron S.c.p.A., SS-14 km, 163.5, in Area Science Park, Basovizza, 34149 Trieste, Italy
2International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
3Centre for Nonconventional Energy Resources, University of Rajasthan, Jaipur-04, India

Received 24 June 2013; Accepted 16 July 2013

Academic Editors: C. M. Chan and J. N. Latosinska

Copyright © 2013 Chhagan Lal and I. P. Jain. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. C. Stipe, M. A. Rezaei, and W. Ho, “Localization of inelastic tunneling and the determination of atomic-scale structure with chemical specificity,” Physical Review Letters, vol. 82, no. 8, pp. 1724–1727, 1999. View at Publisher · View at Google Scholar
  2. C. Santato and F. Rosei, “Organic/metal interfaces: seeing both sides,” Nature Chemistry, vol. 2, no. 5, pp. 344–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. El Garah, F. Palmino, F. Chérioux et al., “Adsorption of zwitterionic assemblies on Si(111)-7×7: a joint tunneling spectroscopy and ab initio study,” Physical Review B, vol. 85, no. 3, Article ID 035425, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. G. P. Loplnski, D. D. M. Wayner, and R. A. Wolkow, “Self-directed growth of molecular nanostructures on silicon,” Nature, vol. 406, no. 6791, pp. 48–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Hamers, S. K. Coulter, M. D. Ellison, et al., “Cycloaddition chemistry of organic molecules with semiconductor surfaces,” Accounts of Chemical Research, vol. 33, no. 9, pp. 617–624, 2000. View at Publisher · View at Google Scholar
  6. M. El Garah, Y. Makoudi, F. Palmino et al., “STM and DFT investigations of isolated porphyrin on a silicon-based semiconductor at room temperature,” ChemPhysChem, vol. 10, no. 18, pp. 3190–3193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J.-C. Lin, J.-H. Kim, J. A. Kellar, M. C. Hersam, S. T. Nguyen, and M. J. Bedzyk, “Building conjugated organic structures on Si(111) surfaces via microwave-assisted sonogashira coupling,” Langmuir, vol. 26, no. 6, pp. 3771–3773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. R. Harikumar, J. C. Polanyi, P. A. Sloan, S. Ayissi, and W. A. Hofer, “Electronic switching of single silicon atoms by molecular field effects,” Journal of the American Chemical Society, vol. 128, no. 51, pp. 16791–16797, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. R. Harikumar, T. Lim, I. R. McNab et al., “Dipole-directed assembly of lines of 1,5-dichloropentane on silicon substrates by displacement of surface charge,” Nature Nanotechnology, vol. 3, no. 4, pp. 222–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Wçll, Ed., Physical and Chemical Aspects of Organic Electronics, Wiley-VCH, Weinheim, Germany, 2009.
  11. J. L. Hoard, “Some aspects of metalloporphyrin stereochemistry,” Annals of the New York Academy of Sciences, vol. 206, pp. 18–31, 1973.
  12. K. M. Kadish, K. M. Smith, and R. Gillard, Eds., The Porphyrin Handbook, Academic Press, San Diego, Calif, USA, 2000.
  13. P. Vilmercati, C. Castellarin-Cudia, R. Gebauer et al., “Mesoscopic donor—acceptor multilayer by ultrahigh-vacuum codeposition of Zn-tetraphenyl-porphyrin and C70,” Journal of the American Chemical Society, vol. 131, no. 2, pp. 644–652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Baciocchi, O. Lanzalunga, A. Lapi, and L. Manduchi, “Kinetic deuterium isotope effect profiles and substituent effects in the oxidative N-demethylation of N,N-dimethylanilines catalyzed by tetrakis(pentafluorophenyl)porphyrin iron(III) chloride,” Journal of the American Chemical Society, vol. 120, no. 23, pp. 5783–5787, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Woehrle, “Porphyrins, phthalocyanines and related systems in polymer phases,” Journal of Porphyrins and Phthalocyanines, vol. 4, no. 4, pp. 418–424, 2000.
  16. J. M. Gottfried, K. Flechtner, A. Kretschmann, T. Lukasczyk, and H.-P. Steinrück, “Direct synthesis of a metalloporphyrin complex on a surface,” Journal of the American Chemical Society, vol. 128, no. 17, pp. 5644–5645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Buchner, V. Schwald, K. Comanici, H.-P. Steinrück, and H. Marbach, “Microscopic evidence of the metalation of a free-base porphyrin monolayer with iron,” ChemPhysChem, vol. 8, no. 2, pp. 241–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Weber-Bargioni, J. Reichert, A. P. Seitsonen, W. Auwärter, A. Schiffrin, and J. V. Barth, “Interaction of cerium atoms with surface-anchored porphyrin molecules,” Journal of Physical Chemistry C, vol. 112, no. 10, pp. 3453–3455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Buchner, K. Flechtner, Y. Bai et al., “Coordination of iron atoms by tetraphenylporphyrin monolayers and multilayers on Ag(111) and formation of iron-tetraphenylporphyrin,” Journal of Physical Chemistry C, vol. 112, no. 39, pp. 15458–15465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. G. K. Wertheim and P. H. Citrin, “Fermi surface excitations in X-ray photoemission line shapes from metals,” in Photoemission in Solids I, vol. 26 of Topics in Applied Physics, pp. 197–236, Springer, New York, NY, USA, 1978.
  21. D. R. Miquita, J. C. González, M. I. N. da Silva et al., “Identification and quantification of iron silicide phases in thin films,” Journal of Vacuum Science and Technology A, vol. 26, no. 5, pp. 1138–1148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Kinsinger, I. Dézsi, P. Steiner, and G. Langouche, “XPS investigations of FeSi, FeSi2 and Fe implanted in Si and Ge,” Journal of Physics: Condensed Matter, vol. 2, no. 22, p. 4955, 1990. View at Publisher · View at Google Scholar
  23. B. Egert and G. Panzner, “Bonding state of silicon segregated to α-iron surfaces and on iron silicide surfaces studied by electron spectroscopy,” Physical Review B, vol. 29, no. 4, pp. 2091–2101, 1984. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Pessa, P. Heimann, and H. Neddermeyer, “Photoemission and electronic structure of iron,” Physical Review B, vol. 14, no. 8, pp. 3488–3493, 1976. View at Publisher · View at Google Scholar · View at Scopus
  25. U. Starke, W. Meier, C. Rath, J. Schardt, W. Weiß, and K. Heinz, “Phase transition and atomic structure of an Fe3Si(100) single crystal surface,” Surface Science, vol. 377–379, pp. 539–543, 1997. View at Scopus
  26. U. Starke, J. Schardt, W. Weiss et al., “Structural and compositional reversible phase transitions on low-index Fe3Si surfaces,” Europhysics Letters, vol. 56, no. 6, pp. 822–828, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. D. K. Sarkar, X. J. Zhou, A. Tannous, M. Louie, and K. T. Leung, “Growth of self-assembled copper nanostructure on conducting polymer by electrodeposition,” Solid State Communications, vol. 125, no. 7-8, pp. 365–368, 2003. View at Scopus
  28. D. H. Aue, H. M. Webb, and M. T. Bowers, “Photoelectron spectrum and gas-phase basicity of manxine. Evidence for a planar bridgehead nitrogen,” Journal of the American Chemical Society, vol. 97, no. 14, pp. 4136–4137, 1975. View at Publisher · View at Google Scholar
  29. Y. Bai, F. Buchner, M. T. Wendahl et al., “Direct metalation of a phthalocyanine monolayer on Ag(111) with coadsorbed iron atoms,” Journal of Physical Chemistry C, vol. 112, no. 15, pp. 6087–6092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Xiao, S. Ditze, M. Chen et al., “Temperature-dependent chemical and structural transformations from 2H-tetraphenylporphyrin to copper(II)-tetraphenylporphyrin on Cu(111),” The Journal of Physical Chemistry C, vol. 116, no. 22, pp. 12275–12282, 2012. View at Publisher · View at Google Scholar
  31. N. Ueno and S. Kera, “Electron spectroscopy of functional organic thin films: deep insights into valence electronic structure in relation to charge transport property,” Progress in Surface Science, vol. 83, pp. 490–557, 2008. View at Publisher · View at Google Scholar
  32. J. Repp, G. Meyer, S. M. Stojkovic, A. Gourdon, and C. Joachim, “Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals,” Physical Review Letters, vol. 94, no. 2, Article ID 026803, 4 pages, 2005. View at Publisher · View at Google Scholar
  33. P. Panchmata, B. Sanyal, and P. Oppeneer, “GGA + U modeling of structural, electronic, and magnetic properties of iron porphyrin-type molecules,” Chemical Physics, vol. 343, no. 1, pp. 47–60, 2008. View at Publisher · View at Google Scholar
  34. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces,” Advanced Materials, vol. 11, no. 8, pp. 605–625, 1999.
  35. J. C. Rivière, Solid State Surface Science, Vol. 1, edited by M. Green, Marcel Dekker, New York, NY, USA, 1969.
  36. G. Hölzl and F. K. Schulte, “Work functions of metals,” in Solid Surface Physics, vol. 85-86 of Springer Tracts in Modern Physics, Springer, Berlin, Germany, 1979.
  37. X. Crispin, V. Geskin, A. Crispin et al., “Characterization of the interface dipole at organic/metal interfaces,” Journal of the American Chemical Society, vol. 124, no. 27, pp. 8131–8141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Lindell, M. P. de Jong, W. Osikowicz et al., “Characterization of the interface dipole at the paraphenylenediamine-nickel interface: a joint theoretical and experimental study,” Journal of Chemical Physics, vol. 122, no. 8, Article ID 084712, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, “Strongly correlated superconductivity and pseudogap phase near a multiband mott insulator,” Physical Review Letters, vol. 93, no. 4, Article ID 047001, 2004. View at Publisher · View at Google Scholar · View at Scopus