About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 692484, 21 pages
http://dx.doi.org/10.1155/2013/692484
Review Article

Nanoporous Gold Electrodes and Their Applications in Analytical Chemistry

Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284-2006, USA

Received 9 December 2012; Accepted 26 December 2012

Academic Editors: N. Chaniotakis, D. Kara, V. A. Lemos, E. Lodyga-Chruscinska, and B. Rittich

Copyright © 2013 Maryanne M. Collinson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Schröper, D. Brüggemann, Y. Mourzina, B. Wolfrum, A. Offenhäusser, and D. Mayer, “Analyzing the electroactive surface of gold nanopillars by electrochemical methods for electrode miniaturization,” Electrochimica Acta, vol. 53, no. 21, pp. 6265–6272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Shin, W. Shin, and H. G. Hong, “Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor,” Electrochimica Acta, vol. 53, no. 2, pp. 720–728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. H. Fathima, J. Paul, and S. Valiyaveettil, “Surface-structured gold-nanotube mats: fabrication, characterization, and application in surface-enhanced Raman scattering,” Small, vol. 6, no. 21, pp. 2443–2447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Marx, M. V. Jose, J. D. Andersen, and A. J. Russell, “Electrospun gold nanofiber electrodes for biosensors,” Biosensors & Bioelectronics, vol. 26, no. 6, pp. 2981–2986, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Kim, G. H. Jeong, K. Y. Lee, K. Kwon, and S. W. Han, “Fabrication of nanoporous superstructures through hierarchical self-assembly of nanoparticles,” Journal of Materials Chemistry, vol. 18, no. 19, pp. 2208–2212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Murata, K. Kajiya, M. Nukaga et al., “A simple fabrication method for three-dimensional gold nanoparticle electrodes and their application to the study of the direct electrochemistry of cytochrome C,” Electroanalysis, vol. 22, no. 2, pp. 185–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Zhao and M. M. Collinson, “Hierarchical porous gold electrodes: preparation, characterization, and electrochemical behavior,” Journal of Electroanalytical Chemistry, vol. 684, pp. 53–59, 2012.
  8. P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chemistry of Materials, vol. 14, no. 5, pp. 2199–2208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Ding, Y. J. Kim, and J. Erlebacher, “Nanoporous gold leaf: “ancient technology”/advanced material,” Advanced Materials, vol. 16, no. 21, pp. 1897–1900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nature Materials, vol. 4, no. 5, pp. 366–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Asefa, C. T. Duncan, and K. K. Sharma, “Recent advances in nanostructured chemosensors and biosensors,” Analyst, vol. 134, no. 10, pp. 1980–1990, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. H. Dai and H. X. Ju, “Bioanalysis based on nanoporous materials,” Trends in Analytical Chemistry, vol. 39, pp. 149–162, 2012.
  13. N. Menzel, E. Ortel, R. Kraehnert, and P. Strasser, “Electrocatalysis using porous nanostructured materials,” Chemphyschem, vol. 13, pp. 1385–1394, 2012.
  14. S. Park, H. C. Kim, and T. D. Chung, “Electrochemical analysis based on nanoporous structures,” Analyst, vol. 137, no. 17, pp. 3891–3903, 2012.
  15. E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials, vol. 2, no. 4, pp. 2188–2215, 2009.
  16. A. Walcarius and A. Kuhn, “Ordered porous thin films in electrochemical analysis,” Trends in Analytical Chemistry, vol. 27, no. 7, pp. 593–603, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Wittstock, J. Biener, and M. Bäumer, “Nanoporous gold: a new material for catalytic and sensor applications,” Physical Chemistry Chemical Physics, vol. 12, no. 40, pp. 12919–12930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Yamauchi and K. Kuroda, “Rational design of mesoporous metals and related nanomaterials by a soft-template approach,” Chemistry, vol. 3, no. 4, pp. 664–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. N. Bartlett, P. R. Birkin, and M. A. Ghanem, “Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates,” Chemical Communications, no. 17, pp. 1671–1672, 2000. View at Scopus
  20. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, “Electrochemical assembly of ordered macropores in gold,” Advanced Materials, vol. 12, no. 12, pp. 888–890, 2000.
  21. F. L. Jia, C. F. Yu, K. J. Deng, and L. Z. Zhang, “Nanoporous metal (Cu, Ag, Au) films with high surface area: General fabrication and preliminary electrochemical performance,” Journal of Physical Chemistry C, vol. 111, no. 24, pp. 8424–8431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic, and J. Erlebacher, “The dealloying critical potential,” Journal of the Electrochemical Society, vol. 149, no. 8, pp. B370–B377, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Wagner, S. R. Brankovic, N. Dimitrov, and K. Sieradzki, “Dealloying below the critical potential,” Journal of the Electrochemical Society, vol. 144, no. 10, pp. 3545–3555, 1997. View at Scopus
  24. W. Huang, M. Wang, J. Zheng, and Z. Li, “Facile fabrication of multifunctional three-dimensional hierarchical porous gold films via surface rebuilding,” Journal of Physical Chemistry C, vol. 113, no. 5, pp. 1800–1805, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. J. Guo, S. J. Dong, and E. K. Wang, “Monodisperse raspberry-like gold submicrometer spheres: large-scale synthesis and interface assembling for colloid sphere array,” Crystal Growth & Design, vol. 8, no. 10, pp. 3581–3585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. H. Li, V. Ravaine, S. Ravaine, P. Garrigue, and A. Kuhn, “Raspberry-like gold microspheres: preparation and electrochemical characterization,” Advanced Functional Materials, vol. 17, no. 4, pp. 618–622, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Biener, A. Wittstock, T. F. Baumann, J. Weissmuller, M. Baumer, and A. V. Hamza, “Surface chemistry in nanoscale materials,” Materials, vol. 2, no. 4, pp. 2404–2428, 2009.
  28. J. Weissmüller, R. C. Newman, H. J. Jin, A. M. Hodge, and J. W. Kysar, “Nanoporous metals by alloy corrosion: formation and mechanical properties,” MRS Bulletin, vol. 34, no. 8, pp. 577–586, 2009. View at Scopus
  29. A. Walcarius, “Template-directed porous electrodes in electroanalysis,” Analytical and Bioanalytical Chemistry, vol. 396, no. 1, pp. 261–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. G. Guo, J. S. Hu, and L. J. Wan, “Nanostructured materials for electrochemical energy conversion and storage devices,” Advanced Materials, vol. 20, no. 23, pp. 2878–2887, 2008. View at Scopus
  31. A. Wittstock, J. Biener, J. Erlebacher, and M. Baumer, Nanoporous Gold: From an Ancient Technology to a High-Tech Material, Royal Society of Chemistry, 2012.
  32. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, “Mesoporous platinum films from lyotropic liquid crystalline phases,” Science, vol. 278, no. 5339, pp. 838–840, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. P. R. Birkin, J. M. Elliott, and Y. E. Watson, “Electrochemical reduction of oxygen on mesoporous platinum microelectrodes,” Chemical Communications, no. 17, pp. 1693–1694, 2000. View at Scopus
  34. H. Boo, S. Park, B. Y. Ku et al., “Ionic strength-controlled virtual area of mesoporous platinum electrode,” Journal of the American Chemical Society, vol. 126, no. 14, pp. 4524–4525, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. H. Nagaraju and V. Lakshminarayanan, “Electrochemically grown mesoporous gold film as high surface area material for electro-oxidation of alcohol in alkaline medium,” Journal of Physical Chemistry C, vol. 113, no. 33, pp. 14922–14926, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. D. B. Robinson, C. A. M. Wu, M. D. Ong, B. W. Jacobs, and B. E. Pierson, “Effect of electrolyte and adsorbates on charging rates in mesoporous gold electrodes,” Langmuir, vol. 26, no. 9, pp. 6797–6803, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. C. Tappan, S. A. Steiner, and E. P. Luther, “Nanoporous metal foams,” Angewandte Chemie - International Edition, vol. 49, no. 27, pp. 4544–4565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir, vol. 23, no. 5, pp. 2414–2422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Ding and M. W. Chen, “Nanoporous metals for catalytic and optical applications,” MRS Bulletin, vol. 34, no. 8, pp. 569–576, 2009. View at Scopus
  40. Z. H. Zhang, Y. Wang, Z. Qi, J. K. Lin, and X. F. Bian, “Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of al-au alloys,” Journal of Physical Chemistry C, vol. 113, no. 4, pp. 1308–1314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. H. Zhang, Y. Wang, Z. Qi, C. Somsen, X. G. Wang, and C. C. Zhao, “Fabrication and characterization of nanoporous gold composites through chemical dealloying of two phase Al-Au alloys,” Journal of Materials Chemistry, vol. 19, no. 33, pp. 6042–6050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. H. Zhang, Y. Wang, Z. Qi, W. H. Zhang, J. Y. Qin, and J. Frenzel, “Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying,” Journal of Physical Chemistry C, vol. 113, no. 29, pp. 12629–12636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Hakamada and M. Mabuchi, “Nanoporous gold prism microassembly through a self-organizing route,” Nano Letters, vol. 6, no. 4, pp. 882–885, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Dursun, D. V. Pugh, and S. G. Corcoran, “A steady-state method for determining the dealloying critical potential,” Electrochemical and Solid-State Letters, vol. 6, no. 8, pp. B32–B34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Márquez, R. Ortiz, J. W. Schultze, O. P. Márquez, J. Márquez, and G. Staikov, “In situ FTIR monitoring of Ag and Au electrodeposition on glassy carbon and silicon,” Electrochimica Acta, vol. 48, no. 6, pp. 711–720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Bozzini, G. P. De Gaudenzi, and C. Mele, “A SERS investigation of the electrodeposition of Ag-Au alloys from free-cyanide solutions—part II,” Journal of Electroanalytical Chemistry, vol. 570, no. 1, pp. 29–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Bozzini, G. P. De Gaudenzi, and C. Mele, “A SERS investigation of the electrodeposition of Ag-Au alloys from free-cyanide solutions,” Journal of Electroanalytical Chemistry, vol. 563, no. 1, pp. 133–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. C. X. Ji, G. Oskam, Y. Ding, J. D. Erlebacher, A. J. Wagner, and P. C. Searson, “Deposition of AuxAg1-x/AuyAg1-y multilayers and multisegment nanowires,” Journal of the Electrochemical Society, vol. 150, no. 8, pp. C523–C528, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. W. S. Chae, D. Van Gough, S. K. Ham, D. B. Robinson, and P. V. Braun, “Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes,” Acs Applied Materials & Interfaces, vol. 4, no. 8, pp. 3973–3979, 2012.
  50. D. A. McCurry, M. Kamundi, M. Fayette, F. Wafula, and N. Dimitrov, “All electrochemical fabrication of a platinized nanoporous Au thin-film catalyst,” Acs Applied Materials & Interfaces, vol. 3, no. 11, pp. 4459–4468, 2011.
  51. S. Sattayasamitsathit, A. M. O'Mahony, X. Y. Xiao, et al., “Highly ordered tailored three-dimensional hierarchical nano/microporous gold-carbon architectures,” Journal of Materials Chemistry, vol. 22, pp. 11950–11956, 2012.
  52. L. Liu, W. Lee, Z. Huang, R. Scholz, and U. Gösele, “Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane,” Nanotechnology, vol. 19, no. 33, Article ID 335604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. C. X. Ji and P. C. Searson, “Fabrication of nanoporous gold nanowires,” Applied Physics Letters, vol. 81, no. 23, pp. 4437–4439, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. C. X. Ji and P. C. Searson, “Synthesis and characterization of nanoporous gold nanowires,” Journal of Physical Chemistry B, vol. 107, no. 19, pp. 4494–4499, 2003. View at Scopus
  55. R. Laocharoensuk, S. Sattayasamitsathit, J. Burdick, P. Kanatharana, P. Thavarungkul, and J. Wang, “Shape-tailored porous gold nanowires: from nano barbells to nano step-cones,” ACS Nano, vol. 1, no. 5, pp. 403–408, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. S. H. Yoo and S. Park, “Platinum-coated, nanoporous gold nanorod arrays: synthesis and characterization,” Advanced Materials, vol. 19, no. 12, pp. 1612–1615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. X. H. Gu, L. Q. Xu, F. Tian, and Y. Ding, “Au-Ag alloy nanoporous nanotubes,” Nano Research, vol. 2, no. 5, pp. 386–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Seker, M. L. Reed, and M. R. Begley, “A thermal treatment approach to reduce microscale void formation in blanket nanoporous gold films,” Scripta Materialia, vol. 60, no. 6, pp. 435–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Kim, W. J. Ha, J. W. Anh, H. S. Kim, S. W. Park, and D. Lee, “Fabrication of nanoporous gold thin films on silicon substrate by multilayer deposition of Au and Ag,” Journal of Alloys and Compounds, vol. 484, no. 1-2, pp. 28–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Wang and P. Schaaf, “Nanoporous gold nanoparticles,” Journal of Materials Chemistry, vol. 22, pp. 5344–5348, 2012.
  61. X. L. Quan, L. M. Fischer, A. Boisen, and M. Tenje, “Development of nanoporous gold electrodes for electrochemical applications,” Microelectronic Engineering, vol. 88, no. 8, pp. 2379–2382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Kawasaki and M. Iino, “Self-assembly of alkanethiol monolayers on Ag-Au(111) alloy surfaces,” Journal of Physical Chemistry B, vol. 110, no. 42, pp. 21124–21130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Seker, Y. Berdichevsky, M. R. Begley, M. L. Reed, K. J. Staley, and M. L. Yarmush, “The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies,” Nanotechnology, vol. 21, no. 12, Article ID 125504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Rouya, S. Cattarin, M. L. Reed, R. G. Kelly, and G. Zangari, “Electrochemical characterization of the surface area of nanoporous gold films,” Journal of the Electrochemical Society, vol. 159, no. 4, pp. K97–K102, 2012.
  65. P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano, vol. 2, no. 12, pp. 2465–2472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. O. V. Shulga, K. Jefferson, A. R. Khan et al., “Preparation and characterization of porous gold and its application as a platform for immobilization of acetylcholine esterase,” Chemistry of Materials, vol. 19, no. 16, pp. 3902–3911, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. H. Tan, J. A. Davis, K. Fujikawa, N. V. Ganesh, A. V. Demchenko, and K. J. Stine, “Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy,” Journal of Materials Chemistry, vol. 22, no. 14, pp. 6733–6745, 2012.
  68. J. F. Huang and I. W. Sun, “Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers,” Advanced Functional Materials, vol. 15, no. 6, pp. 989–994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Snyder, P. Asanithi, A. B. Dalton, and J. Erlebacher, “Stabilized nanoporous metals by dealloying ternary alloy precursors,” Advanced Materials, vol. 20, no. 24, pp. 4883–4886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. C. X. Xu, R. Y. Wang, M. W. Chen, Y. Zhang, and Y. Ding, “Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties,” Physical Chemistry Chemical Physics, vol. 12, no. 1, pp. 239–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. X. G. Wang, J. Z. Sun, C. Zhang, T. Y. Kou, and Z. H. Zhang, “On the microstructure, chemical composition, and porosity evolution of nanoporous alloy through successive dealloying of ternary Al-Pd-Au precursor,” Journal of Physical Chemistry C, vol. 116, no. 24, pp. 13271–13280, 2012.
  72. X. G. Wang, J. Frenzel, W. M. Wang et al., “Length-scale modulated and electrocatalytic activity enhanced nanoporous gold by doping,” Journal of Physical Chemistry C, vol. 115, no. 11, pp. 4456–4465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. J. L. Xu, C. Zhang, X. G. Wang et al., “Fabrication of bi-modal nanoporous bimetallic Pt-Au alloy with excellent electrocatalytic performance towards formic acid oxidation,” Green Chemistry, vol. 13, no. 7, pp. 1914–1922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Detsi, S. Punzhin, J. C. Rao, P. R. Onck, and J. T. M. De Hosson, “Enhanced strain in functional nanoporous gold with a dual microscopic length scale structure,” Acs Nano, vol. 6, no. 5, pp. 3734–3744, 2012.
  75. H. J. Jin, X. L. Wang, S. Parida, K. Wang, M. Seo, and J. Weissmüller, “Nanoporous Au-Pt alloys as large strain electrochemical actuators,” Nano Letters, vol. 10, no. 1, pp. 187–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Kamundi, L. Bromberg, E. Fey, C. Mitchell, M. Fayette, and N. Dimitrov, “Impact of structure and composition on the dealloying of AuxAg(1-x) alloys on the nanoscale,” Journal of Physical Chemistry C, vol. 116, no. 26, pp. 14123–14133, 2012.
  77. X. Lu, T. J. Balk, R. Spolenak, and E. Arzt, “Dealloying of Au-Ag thin films with a composition gradient: influence on morphology of nanoporous Au,” Thin Solid Films, vol. 515, no. 18, pp. 7122–7126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. X. Lu, E. Bischoff, R. Spolenak, and T. J. Balk, “Investigation of dealloying in Au-Ag thin films by quantitative electron probe microanalysis,” Scripta Materialia, vol. 56, no. 7, pp. 557–560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Y. Chen, X. Y. Lang, T. Fujita, and M. W. Chen, “Nanoporous gold for enzyme-free electrochemical glucose sensors,” Scripta Materialia, vol. 65, no. 1, pp. 17–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation,” Applied Physics Letters, vol. 91, no. 8, Article ID 083105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Li and K. Sieradzki, “Ductile-brittle transition in random porous Au,” Physical Review Letters, vol. 68, no. 8, pp. 1168–1171, 1992. View at Scopus
  82. C. McCall, N. Dimitrov, and K. Sieradzki, “Underpotential deposition on alloys,” Journal of the Electrochemical Society, vol. 148, no. 6, pp. E290–E293, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Snyder, K. Livi, and J. Erlebacher, “Dealloying silver/gold alloys in neutral silver nitrate solution: porosity evolution, surface composition, and surface oxides,” Journal of the Electrochemical Society, vol. 155, no. 8, pp. C464–C473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. N. A. Senior and R. C. Newman, “Synthesis of tough nanoporous metals by controlled electrolytic dealloying,” Nanotechnology, vol. 17, no. 9, pp. 2311–2316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Erlebacher and K. Sieradzki, “Pattern formation during dealloying,” Scripta Materialia, vol. 49, no. 10, pp. 991–996, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Detsi, M. van de Schootbrugge, S. Punzhin, P. R. Onck, and J. T. M. De Hosson, “On tuning the morphology of nanoporous gold,” Scripta Materialia, vol. 64, no. 4, pp. 319–322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature, vol. 410, no. 6827, pp. 450–453, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Erlebacher, “An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior,” Journal of the Electrochemical Society, vol. 151, no. 10, pp. C614–C626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Parida, D. Kramer, C. A. Volkert, H. Rösner, J. Erlebacher, and J. Weissmüller, “Volume change during the formation of nanoporous gold by dealloying,” Physical Review Letters, vol. 97, no. 3, Article ID 035504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. H. Tan, J. R. Schallom, N. V. Ganesh, K. Fujikawa, A. V. Demchenko, and K. J. Stine, “Characterization of protein immobilization on nanoporous gold using atomic force microscopy and scanning electron microscopy,” Nanoscale, vol. 3, no. 8, pp. 3395–3407, 2011.
  91. T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Applied Physics Letters, vol. 92, no. 25, Article ID 251902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Rösner, S. Parida, D. Kramer, C. A. Volkert, and J. Weissmüller, “Reconstructing a nanoporous metal in three dimensions: an electron tomography study of dealloyed gold leaf,” Advanced Engineering Materials, vol. 9, no. 7, pp. 535–541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. C. K. Chen, Y. S. Chu, J. Yi et al., “Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography,” Applied Physics Letters, vol. 96, no. 4, Article ID 043122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. C. K. Chen-Wiegart, S. Wang, Y. S. Chu et al., “Structural evolution of nanoporous gold during thermal coarsening,” Acta Materialia, vol. 60, no. 12, pp. 4972–4981, 2012.
  95. A. Wittstock, B. Neumann, A. Schaefer et al., “Nanoporous Au: an unsupported pure gold catalyst?” Journal of Physical Chemistry C, vol. 113, no. 14, pp. 5593–5600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. V. Zielasek, B. Jürgens, C. Schulz et al., “Gold catalysts: nanoporous gold foams,” Angewandte Chemie - International Edition, vol. 45, no. 48, pp. 8241–8244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Schaefer, D. Ragazzon, A. Wittstock et al., “Toward controlled modification of nanoporous gold. A detailed surface science study on cleaning and oxidation,” Journal of Physical Chemistry C, vol. 116, no. 7, pp. 4564–4571, 2012.
  98. Y. Liu, S. Bliznakov, and N. Dimitrov, “Comprehensive study of the application of a pb underpotential deposition-assisted method for surface area measurement of metallic nanoporous materials,” Journal of Physical Chemistry C, vol. 113, no. 28, pp. 12362–12372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. E. Detsi, E. De Jong, A. Zinchenko, and Z. Vukovic, “On the specific surface area of nanoporous materials,” Acta Materialia, vol. 59, no. 20, pp. 7488–7497, 2011.
  100. S. Park, Y. J. Song, J. H. Han, H. Boo, and T. D. Chung, “Structural and electrochemical features of 3D nanoporous platinum electrodes,” Electrochimica Acta, vol. 55, no. 6, pp. 2029–2035, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Szamocki, A. Velichko, C. Holzapfel et al., “Macroporous ultramicroelectrodes for improved electroanalytical measurements,” Analytical Chemistry, vol. 79, no. 2, pp. 533–539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. J. Erlebacher and R. Seshadri, “Hard materials with tunable porosity,” MRS Bulletin, vol. 34, no. 8, pp. 561–568, 2009. View at Scopus
  103. M. Hakamada and M. Mabuchi, “Thermal coarsening of nanoporous gold: melting or recrystallization,” Journal of Materials Research, vol. 24, no. 2, pp. 301–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: improving Raman scattering by tailoring ligament and nanopore ratios,” Applied Physics Letters, vol. 94, no. 21, Article ID 213109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. X. Y. Lang, P. F. Guan, T. Fujita, and M. W. Chen, “Tailored nanoporous gold for ultrahigh fluorescence enhancement,” Physical Chemistry Chemical Physics, vol. 13, no. 9, pp. 3795–3799, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Hakamada, M. Takahashi, and M. Mabuchi, “Enhanced thermal stability of laccase immobilized on monolayer-modified nanoporous Au,” Materials Letters, vol. 66, pp. 4–6, 2012.
  107. B. Pandey, Y. H. Tan, K. Fujikawa, A. V. Demchenko, and K. J. Stine, “Comparative study of the binding of concanavalin A to self-assembled monolayers containing a thiolated alpha-mannoside on flat gold and on nanoporous gold,” Journal of Carbohydrate Chemistry, vol. 31, no. 4–6, pp. 466–503, 2012.
  108. H. Qiu, C. Xu, X. Huang, Y. Ding, Y. Qu, and P. Gao, “Immobilization of laccase on nanoporous gold: comparative studies on the immobilization strategies and the particle size effects,” Journal of Physical Chemistry C, vol. 113, no. 6, pp. 2521–2525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. O. V. Shulga, D. Zhou, A. V. Demchenko, and K. J. Stine, “Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform,” Analyst, vol. 133, no. 3, pp. 319–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. Chu, B. Seo, and J. Kim, “Electrochemical properties of alkanethiol monolayers adsorbed on nanoporous au surfaces,” Bulletin of the Korean Chemical Society, vol. 31, no. 11, pp. 3407–3410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Hakamada, M. Takahashi, T. Furukawa et al., “Electrochemical stability of self-assembled monolayers on nanoporous Au,” Physical Chemistry Chemical Physics, vol. 13, no. 26, pp. 12277–12284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. L. V. Moskaleva, S. Röhe, A. Wittstock et al., “Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold,” Physical Chemistry Chemical Physics, vol. 13, no. 10, pp. 4529–4539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Wittstock, A. Wichmann, J. Biener, and M. Baumer, “Nanoporous gold: a new gold catalyst with tunable properties,” Faraday Discussions, vol. 152, pp. 87–98, 2011.
  114. L. Zhang, L. Y. Chen, H. W. Liu et al., “Effect of residual silver on surface-enhanced Raman scattering of dealloyed nanoporous gold,” Journal of Physical Chemistry C, vol. 115, no. 40, pp. 19583–19587, 2011.
  115. J. Biener, A. Wittstock, M. M. Biener, T. Nowitzki, A. V. Hamza, and M. Baeumer, “Effect of surface chemistry on the stability of gold nanostructures,” Langmuir, vol. 26, no. 17, pp. 13736–13740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. M. M. Biener, J. Biener, A. Wichmann et al., “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Letters, vol. 11, no. 8, pp. 3085–3090, 2011.
  117. Y. Sun and T. J. Balk, “A multi-step dealloying method to produce nanoporous gold with no volume change and minimal cracking,” Scripta Materialia, vol. 58, no. 9, pp. 727–730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. G. W. Nyce, J. R. Hayes, A. V. Hamza, and J. H. Satcher, “Synthesis and characterization of hierarchical porous gold materials,” Chemistry of Materials, vol. 19, no. 3, pp. 344–346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. Ding and J. Erlebacher, “Nanoporous metals with controlled multimodal pore size distribution,” Journal of the American Chemical Society, vol. 125, no. 26, pp. 7772–7773, 2003. View at Publisher · View at Google Scholar · View at Scopus
  120. M. E. Cox and D. C. Dunand, “Bulk gold with hierarchical macro-, micro- and nano-porosity,” Materials Science and Engineering A, vol. 528, no. 6, pp. 2401–2406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. X. M. Li, X. Y. Yang, and S. S. Zhang, “Electrochemical enzyme immunoassay using model labels,” Trends in Analytical Chemistry, vol. 27, no. 6, pp. 543–553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. P. B. Luppa, L. J. Sokoll, and D. W. Chan, “Immunosensors—principles and applications to clinical chemistry,” Clinica Chimica Acta, vol. 314, no. 1-2, pp. 1–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, “Electrochemical biosensors,” Chemical Society Reviews, vol. 39, no. 5, pp. 1747–1763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. C. F. Ding, H. Li, K. C. Hu, and J. M. Lin, “Electrochemical immunoassay of hepatitis B surface antigen by the amplification of gold nanoparticles based on the nanoporous gold electrode,” Talanta, vol. 80, no. 3, pp. 1385–1391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Li, D. Wu, H. Li et al., “Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene,” Analytical Biochemistry, vol. 414, no. 2, pp. 196–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. B. Y. Zhao, Q. Wei, C. Xu et al., “Label-free electrochemical immunosensor for sensitive detection of kanamycin,” Sensors and Actuators B, vol. 155, no. 2, pp. 618–625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. Q. Wei, Y. F. Zhao, C. X. Xu et al., “Nanoporous gold film based immunosensor for label-free detection of cancer biomarker,” Biosensors & Bioelectronics, vol. 26, no. 8, pp. 3714–3718, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Zhang, S. G. Ge, W. P. Li et al., “Ultrasensitive electrochemiluminescence immunoassay for tumor marker detection using functionalized Ru-silica@nanoporous gold composite as labels,” Analyst, vol. 137, no. 3, pp. 680–685, 2012.
  129. S. G. Ge, X. L. Jiao, and D. R. Chen, “Ultrasensitive electrochemical immunosensor for CA 15-3 using thionine-nanoporous gold-graphene as a platform and horseradish peroxidase-encapsulated liposomes as signal amplification,” Analyst, vol. 137, pp. 4440–4447, 2012.
  130. K. C. Hu, D. X. Lan, X. M. Li, and S. S. Zhang, “Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes,” Analytical Chemistry, vol. 80, no. 23, pp. 9124–9130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. K. C. Hu, P. Liu, S. J. Ye, and S. S. Zhang, “Ultrasensitive electrochemical detection of DNA based on PbS nanoparticle tags and nanoporous gold electrode,” Biosensors & Bioelectronics, vol. 24, no. 10, pp. 3113–3119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. X. F. Hu, R. Y. Wang, Y. Ding, X. L. Zhang, and W. R. Jin, “Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis,” Talanta, vol. 80, no. 5, pp. 1737–1743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Yan, M. Zhang, S. G. Ge et al., “Ultrasensitive electrochemiluminescence detection of DNA based on nanoporous gold electrode and PdCu@carbon nanocrystal composites as labels,” Analyst, vol. 137, pp. 3314–3320, 2012.
  134. M. Hakamada, M. Takahashi, and M. Mabuchi, “Enzyme electrodes stabilized by monolayer-modified nanoporous Au for biofuel cells,” Gold Bulletin, vol. 45, no. 1, pp. 9–15, 2012.
  135. M. D. Scanlon, U. Salaj-Kosla, S. Belochapkine et al., “Characterization of nanoporous gold electrodes for bioelectrochemical applications,” Langmuir, vol. 28, no. 4, pp. 2251–2261, 2012.
  136. V. Vamvakaki and N. A. Chaniotakis, “Immobilization of enzymes into nanocavities for the improvement of biosensor stability,” Biosensors & Bioelectronics, vol. 22, no. 11, pp. 2650–2655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. S. Sotiropoulou, V. Vamvakaki, and N. A. Chaniotakis, “Stabilization of enzymes in nanoporous materials for biosensor applications,” Biosensors & Bioelectronics, vol. 20, no. 8, pp. 1674–1679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. H. Qiu, C. Xu, X. Huang, Y. Ding, Y. Qu, and P. Gao, “Adsorption of lacease on the surface of nanoporous gold and the direct electron transfer between them,” Journal of Physical Chemistry C, vol. 112, no. 38, pp. 14781–14785, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. X. Wang, X. Y. Liu, X. L. Yan, P. Zhao, Y. Ding, and P. Xu, “Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability,” Plos One, vol. 6, no. 9, Article ID e24207, 2011.
  140. L. Y. Chen, T. Fujita, and M. W. Chen, “Biofunctionalized nanoporous gold for electrochemical biosensors,” Electrochimica Acta, vol. 67, pp. 1–5, 2012.
  141. H. J. Qiu, L. Y. Xue, G. L. Ji et al., “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosensors & Bioelectronics, vol. 24, no. 10, pp. 3014–3018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. X. L. Yan, X. Wang, P. Zhao, Y. Zhang, P. Xu, and Y. Ding, “Xylanase immobilized nanoporous gold as a highly active and stable biocatalyst,” Microporous and Mesoporous Materials, vol. 161, pp. 1–6, 2012.
  143. H. J. Qiu, Y. Li, G. L. Ji et al., “Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase,” Bioresource Technology, vol. 100, no. 17, pp. 3837–3842, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. H. J. Qiu, G. P. Zhou, G. L. Ji, Y. Zhang, X. R. Huang, and Y. Ding, “A novel nanoporous gold modified electrode for the selective determination of dopamine in the presence of ascorbic acid,” Colloids and Surfaces B, vol. 69, no. 1, pp. 105–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. F. H. Meng, X. L. Yan, J. G. Liu, J. Gu, and Z. G. Zou, “Nanoporous gold as non-enzymatic sensor for hydrogen peroxide,” Electrochimica Acta, vol. 56, no. 12, pp. 4657–4662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. X. B. Ge, L. Q. Wang, Z. N. Liu, and Y. Ding, “Nanoporous gold leaf for amperometric determination of nitrite,” Electroanalysis, vol. 23, no. 2, pp. 381–386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. Z. N. Liu, H. C. Zhang, S. F. Hou, and H. Y. Ma, “Highly sensitive and selective electrochemical detection of L-cysteine using nanoporous gold,” Microchimica Acta, vol. 177, no. 3-4, pp. 427–433, 2012.
  148. Z. N. Liu, H. C. Zhang, H. Y. Ma, and S. F. Hou, “Selective determination of p-nitrophenol based on its unique voltammetric behavior on nanoporous gold,” Electroanalysis, vol. 23, no. 12, pp. 2851–2861, 2011.
  149. Z. N. Liu, J. G. Du, C. C. Qiu et al., “Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold,” Electrochemistry Communications, vol. 11, no. 7, pp. 1365–1368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. X. L. Yan, F. H. Meng, S. Z. Cui, J. G. Liu, J. Gu, and Z. G. Zou, “Effective and rapid electrochemical detection of hydrazine by nanoporous gold,” Journal of Electroanalytical Chemistry, vol. 661, no. 1, pp. 44–48, 2011.
  151. Q. Li, S. Cui, and X. Yan, “Electrocatalytic oxidation of glucose on nanoporous gold membranes,” Journal of Solid State Electrochemistry, vol. 16, no. 3, pp. 1099–1104, 2012. View at Publisher · View at Google Scholar · View at Scopus
  152. S. Park, H. Boo, and T. D. Chung, “Electrochemical non-enzymatic glucose sensors,” Analytica Chimica Acta, vol. 556, no. 1, pp. 46–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. K. E. Toghill and R. G. Compton, “Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation,” International Journal of Electrochemical Science, vol. 5, no. 9, pp. 1246–1301, 2010. View at Scopus
  154. H. Yin, C. Zhou, C. Xu, P. Liu, X. Xu, and Y. Ding, “Aerobic oxidation of D-glucose on support-free nanoporoug gold,” Journal of Physical Chemistry C, vol. 112, no. 26, pp. 9673–9678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. Z. N. Liu, L. H. Huang, L. L. Zhang, H. Y. Ma, and Y. Ding, “Electrocatalytic oxidation of d-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions,” Electrochimica Acta, vol. 54, no. 28, pp. 7286–7293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. B. Seo and J. Kim, “Electrooxidation of glucose at nanoporous gold surfaces: structure dependent electrocatalysis and its application to amperometric detection,” Electroanalysis, vol. 22, no. 9, pp. 939–945, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. Y. Xia, W. Huang, J. Zheng, Z. Niu, and Z. Li, “Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method,” Biosensors & Bioelectronics, vol. 26, no. 8, pp. 3555–3561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita, and M. W. Chen, “Characteristic length and temperature dependence of surface enhanced raman scattering of nanoporous gold,” Journal of Physical Chemistry C, vol. 113, no. 25, pp. 10956–10961, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Applied Physics Letters, vol. 92, no. 9, Article ID 093113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Applied Physics Letters, vol. 90, no. 15, Article ID 153120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology, vol. 22, no. 29, Article ID 295302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  162. L. Zhang, X. Y. Lang, A. Hirata, and M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced raman scattering enhancement,” ACS Nano, vol. 5, no. 6, pp. 4407–4413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. L. H. Qian, B. Das, Y. Li, and Z. L. Yang, “Giant Raman enhancement on nanoporous gold film by conjugating with nanoparticles for single-molecule detection,” Journal of Materials Chemistry, vol. 20, no. 33, pp. 6891–6895, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. Y. Deng, W. Huang, X. Chen, and Z. Li, “Facile fabrication of nanoporous gold film electrodes,” Electrochemistry Communications, vol. 10, no. 5, pp. 810–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  165. G. Zhong, A. Liu, X. Chen et al., “Electrochemical biosensor based on nanoporous gold electrode for detection of PML/RARα fusion gene,” Biosensors & Bioelectronics, vol. 26, no. 9, pp. 3812–3817, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. H. Qiu and X. Huang, “Effects of Pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor,” Journal of Electroanalytical Chemistry, vol. 643, no. 1-2, pp. 39–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. L. E. Ahangar and M. A. Mehrgardi, “Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor,” Biosensors & Bioelectronics, vol. 38, no. 1, pp. 252–257, 2012.
  168. G. Zhong, A. Liu, X. Xu et al., “Detection of femtomolar level osteosarcoma-related gene via a chronocoulometric DNA biosensor based on nanostructure gold electrode,” International Journal of Nanomedicine, vol. 7, pp. 527–536, 2012.
  169. M. Zheng, P. Li, C. Yang et al., “Ferric ion immobilized on three-dimensional nanoporous gold films modified with self-assembled monolayers for electrochemical detection of hydrogen peroxide,” Analyst, vol. 137, no. 5, pp. 1182–1189, 2012.
  170. H. Qiu, Y. Sun, X. Huang, and Y. Qu, “A sensitive nanoporous gold-based electrochemical aptasensor for thrombin detection,” Colloids and Surfaces B, vol. 79, no. 1, pp. 304–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. S. Cherevko and C.-H. Chung, “Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution,” Electrochemistry Communications, vol. 13, no. 1, pp. 16–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. C. Fang, N. M. Bandaru, A. V. Ellis, and N. H. Voelcker, “Electrochemical fabrication of nanoporous gold,” Journal of Materials Chemistry, vol. 22, pp. 2952–2957, 2012.
  173. F. Jia, C. Yu, Z. Ai, and L. Zhang, “Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity,” Chemistry of Materials, vol. 19, no. 15, pp. 3648–3653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  174. A. Ahmadalinezhad and A. C. Chen, “High-performance electrochemical biosensor for the detection of total cholesterol,” Biosensors & Bioelectronics, vol. 26, no. 11, pp. 4508–4513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  175. J. Jiang and X. Wang, “Fabrication of high-surface nanoporous gold microelectrode,” Electrochemistry Communications, vol. 20, pp. 157–159, 2012.
  176. F. Jia, C. Yu, and L. Zhang, “Hierarchical nanoporous gold film electrode with extra high surface area and electrochemical activity,” Electrochemistry Communications, vol. 11, no. 10, pp. 1944–1946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. J. F. Huang and B. T. Lin, “Application of a nanoporous gold electrode for the sensitive detection of copper via mercury-free anodic stripping voltammetry,” Analyst, vol. 134, no. 11, pp. 2306–2313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  178. F. Jia, C. Yu, J. Gong, and L. Zhang, “Deposition of Prussian blue on nanoporous gold film electrode and its electrocatalytic reduction of H2O2,” Journal of Solid State Electrochemistry, vol. 12, no. 12, pp. 1567–1571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  179. J.-F. Huang, “Silver UPD ultra-thin film modified nanoporous gold electrode with applications in the electrochemical detection of chloride,” Talanta, vol. 77, no. 5, pp. 1694–1700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. A. Ahmadalinezhad, A. K. M. Kafi, and A. C. Chen, “Glucose biosensing based on the highly efficient immobilization of glucose oxidase on a Prussian blue modified nanostructured Au surface,” Electrochemistry Communications, vol. 11, no. 10, pp. 2048–2051, 2009. View at Publisher · View at Google Scholar · View at Scopus
  181. Q. F. Yi and W. Q. Yu, “Electrocatalytic activity of a novel titanium-supported nanoporous gold catalyst for glucose oxidation,” Microchimica Acta, vol. 165, no. 3-4, pp. 381–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. A. K. M. Kafi, A. Ahmadalinezhad, J. P. Wang, D. F. Thomas, and A. C. Chen, “Direct growth of nanoporous Au and its application in electrochemical biosensing,” Biosensors & Bioelectronics, vol. 25, no. 11, pp. 2458–2463, 2010. View at Publisher · View at Google Scholar · View at Scopus