About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 786151, 7 pages
http://dx.doi.org/10.1155/2013/786151
Research Article

Simultaneous Determination of Glycyrrhizin and 15 Flavonoids in Licorice and Blood by High Performance Liquid Chromatography with Ultraviolet Detector

1School of Life Science, Beijing Institute of Technology, Beijing 100081, China
2Institute for Food and Cosmetics Control, National Institutes for Food and Drug Control, Beijing 100050, China
3Institute of Special Wild Economic Animals and Plants, Chinese Academic of Agricultural Science, Jilin, Jilin City 132109, China

Received 8 May 2013; Accepted 11 June 2013

Academic Editors: P. Campíns-Falcó and A. Taga

Copyright © 2013 Yongqian Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Nandakumar, T. Singh, and S. K. Katiyar, “Multi-targeted prevention and therapy of cancer by proanthocyanidins,” Cancer Letters, vol. 269, no. 2, pp. 378–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Goel, S. Jhurani, and B. B. Aggarwal, “Multi-targeted therapy by curcumin: how spicy is it?” Molecular Nutrition and Food Research, vol. 52, no. 9, pp. 1010–1030, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Wagner and G. Ulrich-Merzenich, “Synergy research: approaching a new generation of phytopharmaceuticals,” Phytomedicine, vol. 16, no. 2-3, pp. 97–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Wagner, “Synergy research: approaching a new generation of phytopharmaceuticals,” Fitoterapia, vol. 82, no. 1, pp. 34–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Xiang, X. Qiao, Q. Wang et al., “From single compounds to herbal extract: a strategy to systematically characterize the metabolites of licorice in rats,” Drug Metabolism and Disposition, vol. 39, no. 9, pp. 1597–1608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y.-C. Hou, S.-L. Hsiu, H. Ching et al., “Profound difference of metabolic pharmacokinetics between pure glycyrrhizin and glycyrrhizin in licorice decoction,” Life Sciences, vol. 76, no. 10, pp. 1167–1176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Cantelli-Forti, M. A. Raggi, F. Bugamelli, F. Maffei, A. Villari, and N. M. Trieff, “Toxicological assessment of liquorice: biliary excretion in rats,” Pharmacological Research, vol. 35, no. 5, pp. 463–470, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Raggi, F. Maffei, F. Bugamelli, and G. Cantelli Forti, “Bioavailability of glycyrrhizin and licorice extract in rat and human plasma as detected by a HPLC method,” Die Pharmazie, vol. 49, no. 4, pp. 269–272, 1994. View at Scopus
  9. S.-P. Lin, S.-Y. Tsai, Y.-C. Hou, and P.-D. L. Chao, “Glycyrrhizin and licorice significantly affect the pharmacokinetics of methotrexate in rats,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1854–1859, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S.-Y. Xiao, H.-X. Liu, W.-H. Lin, and J.-S. Yang, “Diarylheptanoids in rhizoma zingiberis and their stereoslective reactions during the process of decocting,” Chinese Journal of Analytical Chemistry, vol. 35, no. 9, pp. 1295–1300, 2007. View at Scopus
  11. M. V. Palagina, N. S. Dubnyak, I. N. Dubnyak, and P. S. Zorikov, “Correction of respiratory organ impairment with ural licorice preparations in chronic skin diseases,” Terapevticheskii Arkhiv, vol. 75, no. 1, pp. 63–65, 2003. View at Scopus
  12. B. Liu, J. Yang, Q. Wen, and Y. Li, “Isoliquiritigenin, a flavonoid from licorice, relaxes guinea-pig tracheal smooth muscle in vitro and in vivo: role of cGMP/PKG pathway,” European Journal of Pharmacology, vol. 587, no. 1–3, pp. 257–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Jayaprakasam, S. Doddaga, R. Wang, D. Holmes, J. Goldfarb, and X.-M. Li, “Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro,” Journal of Agricultural and Food Chemistry, vol. 57, no. 3, pp. 820–825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y.-C. Xie, X.-W. Dong, X.-M. Wu, X.-F. Yan, and Q.-M. Xie, “Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice,” International Immunopharmacology, vol. 9, no. 2, pp. 194–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Agarwal, D. Gupta, G. Yadav, P. Goyal, P. K. Singh, and U. Singh, “An evaluation of the efficacy of licorice gargle for attenuating postoperative sore throat: a prospective, randomized, single-blind study,” Anesthesia and Analgesia, vol. 109, no. 1, pp. 77–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Katayama, T. Fukuda, T. Okamura et al., “Effect of dietary addition of seaweed and licorice on the immune performance of pigs,” Animal Science Journal, vol. 82, no. 2, pp. 274–281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Chang, B.-B. Su, Y.-P. Zhou, and D.-R. He, “Assortativity and act degree distribution of some collaboration networks,” Physica A, vol. 383, no. 2, pp. 687–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Schambelan, “Licorice ingestion and blood pressure regulating hormones,” Steroids, vol. 59, no. 2, pp. 127–130, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. B. R. Walker and C. R. W. Edwards, “Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess,” Endocrinology and Metabolism Clinics of North America, vol. 23, no. 2, pp. 359–377, 1994. View at Scopus
  20. C. Schulze zur Wiesch, N. Sauer, and J. Aberle, “Hypertension and hypokalemia—a reninoma as the cause of suspected liquorice-induced arterial hypertension,” Deutsche Medizinische Wochenschrift, vol. 136, no. 17, pp. 882–884, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. E. Miettinen, K. Piippo, T. Hannila-Handelberg et al., “Licorice-induced hypertension and common variants of genes regulating renal sodium reabsorption,” Annals of Medicine, vol. 42, no. 6, pp. 465–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Pant, L. Nadimpalli, M. Singh, and J. C. Cheng, “A case of severe hypokalemic paralysis and hypertension. Licorice-induced hypokalemic paralysis,” American Journal of Kidney Diseases, vol. 55, no. 6, pp. A35–A37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. S. Cooney and J. T. Fitzsimons, “Increased sodium appetite and thirst in rat induced by the ingredients of liquorice, glycyrrhizic acid and glycyrrhetinic acid,” Regulatory Peptides, vol. 66, no. 1-2, pp. 127–133, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Mumoli and M. Cei, “Licorice-induced hypokalemia,” International Journal of Cardiology, vol. 124, no. 3, pp. e42–e44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Noguchi, J. Yang, K. Sakamoto et al., “Inhibitory effects of isoliquiritigenin and licorice extract on voltage-dependent K+ currents in H9c2 cells,” Journal of Pharmacological Sciences, vol. 108, no. 4, pp. 439–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Hukkanen, O. Ukkola, and M. J. Savolainen, “Effects of low-dose liquorice alone or in combination with hydrochlorothiazide on the plasma potassium in healthy volunteers,” Blood Pressure, vol. 18, no. 4, pp. 192–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Chen, L. Zhu, Y. Liu, Q. Zhou, H. Chen, and J. Yang, “Isoliquiritigenin, a flavonoid from licorice, plays a dual role in regulating gastrointestinal motility in vitro and in vivo,” Phytotherapy Research, vol. 23, no. 4, pp. 498–506, 2009. View at Publisher · View at Google Scholar
  28. Q. Zhang and M. Ye, “Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice),” Journal of Chromatography A, vol. 1216, no. 11, pp. 1954–1969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Y.-C. Wang and Y.-S. Yang, “Simultaneous quantification of flavonoids and triterpenoids in licorice using HPLC,” Journal of Chromatography B, vol. 850, no. 1-2, pp. 392–399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Tan, Z. Zhu, H. Zhang et al., “Analysis of phenolic and triterpenoid compounds in licorice and rat plasma by high-performance liquid chromatography diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 24, no. 2, pp. 209–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Li, S. Liang, F. Du, and C. Li, “Simultaneous quantification of multiple licorice flavonoids in rat plasma,” Journal of the American Society for Mass Spectrometry, vol. 18, no. 4, pp. 778–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. “Sini Tang,” in Chinese Pharmacopoeia, Chinese Pharmacopoeia Committee, Ed., p. 650, Chinese Press of Pharmaceutical and Medicinal Science and Technology, Beijing, China, 2010.
  33. Y. Ozaki, M. Noguchi, H. Kamakura, and M. Harada, “Studies on concentration of glycyrrhizin in plasma and its absorption after oral administration of licorice extract and glycyrrhizin,” Yakugaku Zasshi, vol. 110, no. 1, pp. 77–81, 1990. View at Scopus
  34. H.-X. Liu, W.-H. Lin, X.-L. Wang, and J.-S. Yang, “Flavonoids from preparation of traditional Chinese medicines named Sini-Tang,” Journal of Asian Natural Products Research, vol. 7, no. 2, pp. 139–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H.-X. Liu, W.-H. Lin, and J.-S. Yang, “Studies on chemical constituents of sini tang,” China Journal of Chinese Materia Medica, vol. 29, no. 5, pp. 434–436, 2004. View at Scopus
  36. A. P. Rauter, A. Martins, C. Borges et al., “Liquid chromatography-diode array detection-electrospray ionisation mass spectrometry/nuclear magnetic resonance analyses of the anti-hyperglycemic flavonoid extract of Genista tenera: structure elucidation of a flavonoid-C-glycoside,” Journal of Chromatography A, vol. 1089, no. 1-2, pp. 59–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Waridel, J.-L. Wolfender, K. Ndjoko, K. R. Hobby, H. J. Major, and K. Hostettmann, “Evaluation of quadrupole time-of-flight tandem mass spectrometry and ion-trap multiple-stage mass spectrometry for the differentiation of C-glycosidic flavonoid isomers,” Journal of Chromatography A, vol. 926, no. 1, pp. 29–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Jin, Y. Yang, B. Su, and Q. Ren, “Determination of soyasaponins Ba and Bb in human serum by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry,” Journal of Chromatography B, vol. 846, no. 1-2, pp. 169–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Tsukamoto, M. Aburatani, T. Yoshida, Y. Yamashita, A. A. El-Beih, and T. Ohta, “CYP3A4 inhibitors isolated from licorice,” Biological and Pharmaceutical Bulletin, vol. 28, no. 10, pp. 2000–2002, 2005. View at Publisher · View at Google Scholar · View at Scopus