About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 805678, 6 pages
http://dx.doi.org/10.1155/2013/805678
Research Article

Microwave-Assisted Derivatization of Bile Acids for Gas Chromatography/Mass Spectrometry Determination

1Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627 Pampulha, 31270-901 Belo Horizonte, MG, Brazil
2Universidade Federal de São João Del Rei, Avenida Sebastião Gonçalves Coelho 400 Chanadour, 35501-296, Divinópolis, MG, Brazil

Received 8 July 2013; Accepted 7 August 2013

Academic Editors: D. J. Fletouris, R. K. Jyothi, A. Przyjazny, and I. Zhukov

Copyright © 2013 Maria José Nunes de Paiva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Burkard, A. von Eckardstein, and K. M. Rentsch, “Differentiated quantification of human bile acids in serum by high-performance liquid chromatography-tandem mass spectrometry,” Journal of Chromatography B, vol. 826, no. 1-2, pp. 147–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Fini, G. Feroci, and A. Roda, “Acidity in bile acid systems,” Polyhedron, vol. 21, no. 14-15, pp. 1421–1427, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. A. K. Batta and G. Salen, “Gas chromatography of bile acids,” Journal of Chromatography B, vol. 723, no. 1-2, pp. 1–16, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Roda, F. Piazza, and M. Baraldini, “Separation techniques for bile salts analysis,” Journal of Chromatography B, vol. 717, no. 1-2, pp. 263–278, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. A.-M. Montet, L. Oliva, F. Beaugé, and J.-C. Montet, “Bile salts modulate chronic ethanol-induced hepatotoxicity,” Alcohol and Alcoholism, vol. 37, no. 1, pp. 25–29, 2002. View at Scopus
  6. M. J. N. de Paiva and M. E. P. B. de Siqueira, “Increased serum bile acids as a possible biomarker of hepatotoxicity in Brazilian workers exposed to solvents in car repainting shops,” Biomarkers, vol. 10, no. 6, pp. 456–463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Iida, S. Ogawa, G. Kakiyama et al., “Capillary gas chromatographic separation of bile acid acyl glycosides without thermal decomposition and isomerization,” Journal of Chromatography A, vol. 1057, no. 1-2, pp. 171–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Iida, S. Tazawa, T. Tamaru, J. Goto, and T. Nambara, “Gas chromatographic separation of bile acid 3-glucosides and 3-glucuronides without prior deconjugation on a stainless-steel capillary column,” Journal of Chromatography A, vol. 689, no. 1, pp. 77–84, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Mashige, N. Tanaka, A. Maki, S. Kamei, and M. Yamanaka, “Direct spectrophotometry of total bile acids in serum,” Clinical Chemistry, vol. 27, no. 8, pp. 1352–1356, 1981. View at Scopus
  10. K. A. Kouremenos, J. J. Harynuk, W. L. Winniford, P. D. Morrison, and P. J. Marriott, “One-pot microwave derivatization of target compounds relevant to metabolomics with comprehensive two-dimensional gas chromatography,” Journal of Chromatography B, vol. 878, no. 21, pp. 1761–1770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Schummer, O. Delhomme, B. M. R. Appenzeller, R. Wennig, and M. Millet, “Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis,” Talanta, vol. 77, no. 4, pp. 1473–1482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Shareef, M. J. Angove, and J. D. Wells, “Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N,O-bis-(trimethylsilyl)-trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17α-ethinylestradiol by gas chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1108, no. 1, pp. 121–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. J. Wells, “Recent advances in non-silylation derivatization techniques for gas chromatography,” Journal of Chromatography A, vol. 843, no. 1-2, pp. 1–18, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Drozd, “Chemical derivatization in gas chromatography,” Journal of Chromatography A, vol. 113, no. 3, pp. 303–356, 1975. View at Scopus
  15. Y. Alnouti, I. L. Csanaky, and C. D. Klaassen, “Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS,” Journal of Chromatography B, vol. 873, no. 2, pp. 209–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. K. Batta, G. Salen, P. Batta, G. S. Tint, D. S. Alberts, and D. L. Earnest, “Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by capillary gas-liquid chromatography,” Journal of Chromatography B, vol. 775, no. 2, pp. 153–161, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Bobeldijk, M. Hekman, J. de Vries-van der Weij et al., “Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: compound class targeting in a metabolomics workflow,” Journal of Chromatography B, vol. 871, no. 2, pp. 306–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. W. J. Griffiths and J. Sjövall, “Analytical strategies for characterization of bile acid and oxysterol metabolomes,” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 80–84, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Bowden, D. M. Colosi, D. C. Mora-Montero, T. J. Garrett, and R. A. Yost, “Enhancement of chemical derivatization of steroids by gas chromatography/mass spectrometry (GC/MS),” Journal of Chromatography B, vol. 877, no. 27, pp. 3237–3242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-Q. Zhou, Z.-J. Wang, and N. Jia, “Formation of multiple trimethylsilyl derivatives in the derivatization of 17α-ethinylestradiol with BSTFA or MSTFA followed by gas chromatography-mass spectrometry determination,” Journal of Environmental Sciences, vol. 19, no. 7, pp. 879–884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Á. Sebok, K. Sezer, A. Vasanits-Zsigrai, A. Helenkár, G. Záray, and I. Molnár-Perl, “Gas chromatography-mass spectrometry of the trimethylsilyl (oxime) ether/ester derivatives of cholic acids: their presence in the aquatic environment,” Journal of Chromatography A, vol. 1211, no. 1-2, pp. 104–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. W. J. Griffiths and Y. Wang, “Analysis of neurosterols by GC-MS and LC-MS/MS,” Journal of Chromatography B, vol. 877, no. 26, pp. 2778–2805, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. L. Little, “Artifacts in trimethylsilyl derivatization reactions and ways to avoid them,” Journal of Chromatography A, vol. 844, no. 1-2, pp. 1–22, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. B. S. Kumar, B. C. Chung, Y.-J. Lee, H. J. Yi, B.-H. Lee, and B. H. Jung, “Gas chromatography-mass spectrometry-based simultaneous quantitative analytical method for urinary oxysterols and bile acids in rats,” Analytical Biochemistry, vol. 408, no. 2, pp. 242–252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Tyagi, D. R. Edwards, and M. S. Coyne, “Fecal sterol and bile acid biomarkers: Runoff concentrations in animal waste-amended pastures,” Water, Air, and Soil Pollution, vol. 198, no. 1–4, pp. 45–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Casas-Catalán, M. T. Doménech-Carbó, R. Mateo-Castro, J. V. Gimeno-Adelantado, and F. Bosch-Reig, “Characterization of bile acids and fatty acids from ox bile in oil paintings by gas chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1025, no. 2, pp. 269–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Ranz, A. Eberl, E. Maier, and E. Lankmayr, “Microwave-assisted derivatization of acidic herbicides for gas chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1192, no. 2, pp. 282–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Damm, G. Rechberger, M. Kollroser, and C. O. Kappe, “Microwave-assisted high-throughput derivatization techniques utilizing silicon carbide microtiter platforms,” Journal of Chromatography A, vol. 1217, no. 1, pp. 167–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Liebeke, A. Wunder, and M. Lalk, “A rapid microwave-assisted derivatization of bacterial metabolome samples for gas chromatography/mass spectrometry analysis,” Analytical Biochemistry, vol. 401, no. 2, pp. 312–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. C. Fiamegos, A. Karatapanis, and C. D. Stalikas, “Microwave-assisted phase-transfer catalysis for the rapid one-pot methylation and gas chromatographic determination of phenolics,” Journal of Chromatography A, vol. 1217, no. 5, pp. 614–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. EURACHEM, Guide to Quality in Analytical Chemistry Na AID to Accreditation, CITAC/EURACHEM, 2002.