About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 825318, 9 pages
http://dx.doi.org/10.1155/2013/825318
Research Article

Qualitative and Quantitative Control of Honeys Using NMR Spectroscopy and Chemometrics

1Chemisches und Veterinäruntersuchungsamt (CVUA) Freiburg, Bissierstraße 5, 79114 Freiburg, Germany
2Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany
3Bruker BioSpin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
4Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov 410012, Russia
5Ministry of Rural Affairs and Consumer Protection, Kernerplatz 10, 70182 Stuttgart, Germany

Received 21 March 2013; Accepted 16 April 2013

Academic Editors: A. Bouklouze, S. E. Jorge-Villar, W. X. Misiuk, A. Orte, Y. van der Burgt, and W. M. Winnik

Copyright © 2013 Marc Ohmenhaeuser et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Aparna and D. Rajalakshmi, “Honey—its characteristics, sensory aspects, and applications,” Food Reviews International, vol. 15, no. 4, pp. 455–471, 1999. View at Scopus
  2. J. Louveaux, A. Maurizio, and G. Vorwohl, “Methods of Melissopalynology,” Bee World, vol. 59, no. 4, pp. 139–157, 1978.
  3. A. Zakaria, A. Y. Shakaff, M. J. Masnan et al., “A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration,” Sensors, vol. 11, no. 8, pp. 7799–7822, 2011.
  4. P. Arquillue and A. H. Marteache, “Analysis of protein amino acids in some honeys from Los Monegros Spain,” Alimentaria, vol. 24, no. 183, pp. 67–71, 1987.
  5. J. Prodolliet and C. Hischenhuber, “Food authentication by carbohydrate chromatography,” Zeitschrift fur Lebensmittel -Untersuchung und -Forschung, vol. 207, no. 1, pp. 1–12, 1998. View at Scopus
  6. L. A. Marghitas, D. S. Dezmirean, C. B. Pocol, M. Ilea, O. Bobis, and I. Gergen, “The development of a biochemical profile of acacia honey by identifying biochemical determinants of its quality,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 38, no. 2, pp. 84–90, 2010. View at Scopus
  7. G. Beretta, R. Artali, E. Caneva, S. Orlandini, M. Centini, and R. M. Facino, “Quinoline alkaloids in honey: further analytical (HPLC-DAD-ESI-MS, multidimensional diffusion-ordered NMR spectroscopy), theoretical and chemometric studies,” Journal of Pharmaceutical and Biomedical Analysis, vol. 50, no. 3, pp. 432–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Gilbert, M. J. Shepherd, M. A. Wallwork, and R. G. Harris, “Determination of the geographical origin of honeys by multivariate-analysis of gas-chromatographic data on their free amino-acid content,” Journal of Apicultural Research, vol. 20, no. 2, pp. 125–135, 1981.
  9. A. Terrab, B. V. Castrillón, and M. J. D. Dapena, “Pollen analysis of honeys from the Gharb region (NW Morocco),” Grana, vol. 40, no. 4-5, pp. 210–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. I. Ruiz-Matute, M. Brokl, A. C. Soria, M. L. Sanz, and I. Martínez-Castro, “Gas chromatographic-mass spectrometric characterisation of tri- and tetrasaccharides in honey,” Food Chemistry, vol. 120, no. 2, pp. 637–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Nagy, R. Bátai, G. Nagy, and G. Nagy, “Application of copper electrode based amperometric detector cell for LC analysis of main sugar component of honey and nectar,” Analytical Letters, vol. 43, no. 7, pp. 1411–1426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. R. Won, D. C. Lee, S. H. Ko, J. W. Kim, and H. I. Rhee, “Honey major protein characterization and its application to adulteration detection,” Food Research International, vol. 41, no. 10, pp. 952–956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Wang, M. M. Kliks, W. Qu, S. Jun, G. Shi, and Q. X. Li, “Rapid determination of the geographical origin of honey based on protein fingerprinting and barcoding using MALDI TOF MS,” Journal of Agricultural and Food Chemistry, vol. 57, no. 21, pp. 10081–10088, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. F. Pierna, O. Abbas, P. Dardenne, and V. Baeten, “Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics,” Biotechnology, Agronomy and Society and Environment, vol. 15, no. 1, pp. 75–84, 2011. View at Scopus
  15. A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris et al., “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” Journal of Agricultural and Food Chemistry, vol. 53, no. 2, pp. 207–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. García-Alvarez, J. F. Huidobro, M. Hermida, and J. L. Rodríguez-Otero, “Major components of honey analysis by near-infrared transflectance spectroscopy,” Journal of Agricultural and Food Chemistry, vol. 48, no. 11, pp. 5154–5158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Dvash, O. Afik, S. Shafir et al., “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea americana Mill.) honey,” Journal of Agricultural and Food Chemistry, vol. 50, no. 19, pp. 5283–5287, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Zhu, S. Li, Y. Shan et al., “Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics,” Journal of Food Engineering, vol. 101, no. 1, pp. 92–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Cozzolino, E. Corbella, and H. Smyth, “Quality control of honey using infrared spectroscopy: a review,” Applied Spectroscopy Reviews, vol. 46, no. 7, pp. 523–538, 2011.
  20. L. Svecnjak, N. Biliskov, D. Bubalo, and D. Barisic, “Application of infrared spectroscopy in honey analysis,” Agriculturae Conspectus Scientificus, vol. 76, no. 3, pp. 191–195, 2011.
  21. S. Hennessy, G. Downey, and C. P. O'Donnell, “Attempted confirmation of the provenance of corsican PDO honey using FT-IR spectroscopy and multivariate data analysis,” Journal of Agricultural and Food Chemistry, vol. 58, no. 17, pp. 9401–9406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Sivakesava and J. Irudayaraj, “Classification of simple and complex sugar adulterants in honey by mid-infrared spectroscopy,” International Journal of Food Science and Technology, vol. 37, no. 4, pp. 351–360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Paradkar, J. Irudayaraj, and S. Sakhamuri, “Discrimination and classification of beet and cane sugars and their inverts in maple syrup by FT-Raman,” Applied Engineering in Agriculture, vol. 18, no. 3, pp. 379–383, 2002. View at Scopus
  24. H. Wang, Y. Q. Liu, H. M. Yang, Q. L. Guo, H. L. Shi, and L. B. Yan, “Determination of glucose, fructose, sucrose, maltose and lactose in sugar-free products by liquid chromatography-tandem mass spectrometry,” Chinese Journal of Analytical Chemistry, vol. 38, no. 6, pp. 873–876, 2010.
  25. T. Gallardo-Velázquez, G. Osorio-Revilla, M. Z. D. Loa, and Y. Rivera-Espinoza, “Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys,” Food Research International, vol. 42, no. 3, pp. 313–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. F. Cotte, H. Casabianca, J. Lhéritier et al., “Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey,” Analytica Chimica Acta, vol. 582, no. 1, pp. 125–136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Mazzoni, P. Bradesi, F. Tomi, and J. Casanova, “Direct qualitative and quantitative analysis of carbohydrate mixtures using C-13 NMR spectroscopy: application to honey,” Magnetic Resonance in Chemistry, vol. 35, pp. S81–S90, 1997. View at Scopus
  28. R. Consonni and L. R. Cagliani, “Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics,” Journal of Agricultural and Food Chemistry, vol. 56, no. 16, pp. 6873–6880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Schievano, E. Peggion, and S. Mammi, “H-1 nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin,” Journal of Agricultural and Food Chemistry, vol. 58, no. 1, pp. 57–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. A. Donarski, S. A. Jones, and A. J. Charlton, “Application of cryoprobe H-1 nuclear magnetic resonance spectroscopy and multivariate analysis for the verification of corsican honey,” Journal of Agricultural and Food Chemistry, vol. 56, no. 14, pp. 5451–5456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Sandusky and D. Raftery, “Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: application to the metabonomics of amino acids in honey,” Analytical Chemistry, vol. 77, no. 8, pp. 2455–2463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. DIN 10752, Untersuchung von Honig; Bestimmung des Wassergehaltes, Refraktometrisches Verfahren, Berlin, Germany, 2012.
  33. D. W. Lachenmeier, W. Frank, E. Humpfer et al., “Quality control of beer using high-resolution nuclear magnetic resonance spectroscopy and multivariate analysis,” European Food Research and Technology, vol. 220, no. 2, pp. 215–221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. R. A. van den Berg, H. C. J. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. van der Werf, “Centering, scaling, and transformations: improving the biological information content of metabolomics data,” BMC Genomics, vol. 7, article 142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Lolli, D. Bertelli, M. Plessi, A. G. Sabatini, and C. Restani, “Classification of Italian honeys by 2D HR-NMR,” Journal of Agricultural and Food Chemistry, vol. 56, no. 4, pp. 1298–1304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Truchado, I. Martos, L. Bortolotti, A. G. Sabatini, F. Ferreres, and F. A. Tomas-Barberan, “Use of quinoline alkaloids as markers of the floral origin of chestnut honey,” Journal of Agricultural and Food Chemistry, vol. 57, no. 13, pp. 5680–5686, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Beretta, E. Caneva, L. Regazzoni, N. G. Bakhtyari, and R. Maffei Facino, “A solid-phase extraction procedure coupled to H-1 NMR, with chemometric analysis, to seek reliable markers of the botanical origin of honey,” Analytica Chimica Acta, vol. 620, no. 1-2, pp. 176–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Bertelli, M. Lolli, G. Papotti, L. Bortolotti, G. Serra, and M. Plessi, “Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance,” Journal of Agricultural and Food Chemistry, vol. 58, no. 15, pp. 8495–8501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Donarski, D. P. T. Roberts, and A. J. Charlton, “Quantitative NMR spectroscopy for the rapid measurement of methylglyoxal in manuka honey,” Analytical Methods, vol. 2, no. 10, pp. 1479–1483, 2010. View at Publisher · View at Google Scholar · View at Scopus