About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 851713, 14 pages
http://dx.doi.org/10.1155/2013/851713
Research Article

Determination of 25 Trace Element Concentrations in Biological Reference Materials by ICP-MS following Different Microwave-Assisted Acid Digestion Methods Based on Scaling Masses of Digested Samples

1Centro Nacional de Aceleradores (CNA), Universidad de Sevilla, Thomas Alba Edison 7, 41092 Seville, Spain
2Departamento de Fisica Aplicada I, E.T.S. de Ingenieria Agronomica, Universidad de Sevilla, Carretera Utrera km. 1, 41013 Seville, Spain
3Technische Universität München, Physics Department E12, James-Franck-Straße 1, 85748 Garching bei München, Germany

Received 28 April 2013; Accepted 26 May 2013

Academic Editors: H. Alemu, G. Drochioiu, D. J. Fletouris, F. Kandemirli, A. Orte, and I. Zhukov

Copyright © 2013 S. M. Enamorado-Báez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Sucharová and I. Suchara, “Determination of 36 elements in plant reference materials with different Si contents by inductively coupled plasma mass spectrometry: comparison of microwave digestions assisted by three types of digestion mixtures,” Analytica Chimica Acta, vol. 576, no. 2, pp. 163–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Ashoka, B. M. Peake, G. Bremner, K. J. Hageman, and M. R. Reid, “Comparison of digestion methods for ICP-MS determination of trace elements in fish tissues,” Analytica Chimica Acta, vol. 653, no. 2, pp. 191–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. F. C. Bressy, G. B. Brito, I. S. Barbosa, L. S. G. Teixeira, and M. G. A. Korn, “Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion,” Microchemical Journal, vol. 109, pp. 145–149, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Paredes, M. S. Prats, S. E. Maestre, and J. L. Todolí, “Rapid analytical method for the determination of organic and inorganic species in tomato samples through HPLC-ICP-AES coupling,” Food Chemistry, vol. 111, no. 2, pp. 469–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. W. P. C. dos Santos, V. Hatje, D. D. S. Santil, A. P. Fernandes, M. G. A. Korn, and M. M. de Souza, “Optimization of a centrifugation and ultrasound-assisted procedure for the determination of trace and major elements in marine invertebrates by ICP OES,” Microchemical Journal, vol. 95, no. 2, pp. 169–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Meche, M. C. Martins, B. E. S. N. Lofrano, C. J. Hardaway, M. Merchant, and L. Verdade, “Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in fish from the Piracicaba River in Southern Brazil,” Microchemical Journal, vol. 94, no. 2, pp. 171–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Demirbas, “Oil, micronutrient and heavy metal contents of tomatoes,” Food Chemistry, vol. 118, no. 3, pp. 504–507, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. S. Nunes, J. T. P. Barbosa, A. P. Fernandes et al., “Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation,” Food Chemistry, vol. 127, no. 2, pp. 780–783, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Hoenig, H. Baeten, S. Vanhentenrijk, E. Vassileva, and P. Quevauviller, “Critical discussion on the need for an efficient mineralization procedure for the analysis of plant material by atomic spectrometric methods,” Analytica Chimica Acta, vol. 358, no. 1, pp. 85–94, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Canli and G. Atli, “The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species,” Environmental Pollution, vol. 121, no. 1, pp. 129–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Hornung, M. D. Krom, Y. Cohen, and M. Bernhard, “Trace metal content in deep-water sharks from the eastern Mediterranean Sea,” Marine Biology, vol. 115, no. 2, pp. 331–338, 1993. View at Scopus
  12. A. Giguère, P. G. C. Campbell, L. Hare, D. G. McDonald, and J. B. Rasmussen, “Influence of lake chemistry and fish age on cadmium, copper, and zinc concentrations in various organs of indigenous yellow perch (Perca flavescens),” Canadian Journal of Fisheries and Aquatic Sciences, vol. 61, no. 9, pp. 1702–1716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Agemian, D. P. Sturtevant, and K. D. Austen, “Simultaneous acid extraction of six trace metals from fish tissue by hot-block digestion and determination by atomic-absorption spectrometry,” Analyst, vol. 105, no. 1247, pp. 125–130, 1980. View at Scopus
  14. V. Sandroni and C. M. M. Smith, “Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma-atomic emission spectrometry,” Analytica Chimica Acta, vol. 468, no. 2, pp. 335–344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Sastre, A. Sahuquillo, M. Vidal, and G. Rauret, “Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction,” Analytica Chimica Acta, vol. 462, no. 1, pp. 59–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Lachas, R. Richaud, A. A. Herod, D. R. Dugwell, R. Kandiyoti, and K. E. Jarvis, “Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes,” Analyst, vol. 124, no. 2, pp. 177–184, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. L. García-Rico, R. E. Ramos-Ruiz, and L. Gutiérrez-Coronola, “Total metals in Cultivated oysters from the Northwest coast of Mexico determined by microwave digestion and atomic absorption spectrometry,” The Journal of AOAC International, vol. 84, pp. 1909–1913, 2001.
  18. K. J. Lamble and S. J. Hill, “Microwave digestion procedures for environmental matrices,” Analyst, vol. 123, no. 7, pp. 103R–133R, 1998. View at Scopus
  19. J. Ivanova, R. Djingova, S. Korhammer, and B. Markert, “On the microwave digestion of soils and sediments for determination of lanthanides and some toxic and essential elements by inductively coupled plasma source mass spectrometry,” Talanta, vol. 54, no. 4, pp. 567–574, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. K. E. Jarvis, A. L. Gray, and R. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry, Blackie, London, UK, 1992.
  21. Z. Mester, M. Angelone, C. Brunori, C. Cremisini, H. Muntau, and R. Morabito, “Digestion methods for analysis of fly ash samples by atomic absorption spectrometry,” Analytica Chimica Acta, vol. 395, no. 1-2, pp. 157–163, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Xing and P. L. M. Veneman, “Microwave digestion for analysis of metals in soil,” Communications in Soil Science and Plant Analysis, vol. 29, no. 7-8, pp. 923–930, 1998. View at Scopus
  23. N. N. Meeravali and S. J. Kumar, “Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry,” Fresenius' Journal of Analytical Chemistry, vol. 366, no. 3, pp. 313–315, 2000. View at Scopus
  24. H. Polkowska-Motrenko, B. Danko, R. Dybczyński, A. Koster-Ammerlaan, and P. Bode, “Effect of acid digestion method on cobalt determination in plant materials,” Analytica Chimica Acta, vol. 408, no. 1-2, pp. 89–95, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. US-EPA Method 3051A, “Microwave assisted acid digestion of sediments, sludges, soils and oils,” in Test Methods For Evaluating Solid Waste, US Environmental Protection Agency, Washington, DC, USA, 3rd edition, 2007.
  26. US-EPA Method 3052, “Microwave assisted acid digestion of siliceous and organically based matrices,” in Test Methods For Evaluating Solid Waste, US Environmental Protection Agency, Washington, DC, USA, 3rd edition, 1995.
  27. H. M. Kingston and S. J. Haswell, Microwave-Enhanced Chemistry. Fundamentals, Sample Preparation and Applications, American Chemical Society, Washington, DC, USA, 1997.
  28. N. M. Hassan, P. E. Rasmussen, E. Dabek-Zlotorzynska, V. Celo, and H. Chen, “Analysis of environmental samples using microwave-assisted acid digestion and inductively coupled plasma mass spectrometry: maximizing total element recoveries,” Water, Air, and Soil Pollution, vol. 178, no. 1–4, pp. 323–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. E. J. Llorent-Martínez, P. Ortega-Barrales, M. L. Fernández-de Córdova, A. Domínguez-Vidal, and A. Ruiz-Medina, “Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain,” Food Chemistry, vol. 127, pp. 1257–1262, 2001.
  30. H. Altundag and M. Tuzen, “Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES,” Food and Chemical Toxicology, vol. 49, no. 11, pp. 2800–2807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Yafa and J. G. Farmer, “A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry,” Analytica Chimica Acta, vol. 557, no. 1-2, pp. 296–303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Marguí, I. Queralt, M. L. Carvalho, and M. Hidalgo, “Comparison of EDXRF and ICP-OES after microwave digestion for element determination in plant specimens from an abandoned mining area,” Analytica Chimica Acta, vol. 549, no. 1-2, pp. 197–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. NIST. National Institute of Standards and Technology, Certificate of Analysis, Standard Reference Material 1549 Non Fat Milk Powder, 2009.
  34. NIST. National Institute of Standards and Technology, Certificate of Analysis, Standard Reference Material 2976 Mussel Tissue, 2008.
  35. NIST. National Institute of Standards and Technology, Certificate of Analysis, Standard Reference Material 1573a Tomato Leaves, 1993.
  36. J. T. Creed, C. A. Brockhoff, and T. D. Martin, “US-EPA Method 200.8: determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry,” in Environmental Monitoring Systems Laboratory Office of Research and Development, Revision 5.4 EMMC Version, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA, 1994.
  37. I. B. Brenner and B. Spence, “Determination of metals in environmental samples using the X series ICP-MS,” in Instructions for Operation Based on US-EPA Method 200.8 Version 5.5, Version: 2-2, Thermo Electron Corporation, 2005.
  38. J. Arunachalam, C. Mohl, P. Ostapczuk, and H. Emons, “Multielement characterization of soil samples with ICP-MS for environmental studies,” Fresenius' Journal of Analytical Chemistry, vol. 352, no. 6, pp. 577–581, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. M. H. Gonzalez, G. B. Souza, R. V. Oliveira, L. A. Forato, J. A. Nóbrega, and A. R. A. Nogueira, “Microwave-assisted digestion procedures for biological samples with diluted nitric acid: identification of reaction products,” Talanta, vol. 79, no. 2, pp. 396–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Rodushkin, T. Ruth, and Å. Huhtasaari, “Comparison of two digestion methods for elemental determinations in plant material by ICP techniques,” Analytica Chimica Acta, vol. 378, no. 1–3, pp. 191–200, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Falciani, E. Novaro, M. Marchesini, and M. Gucciardi, “Multi-element analysis of soil and sediment by ICP-MS after a microwave assisted digestion method,” Journal of analytical atomic spectrometry, vol. 15, no. 5, pp. 561–565, 2000. View at Publisher · View at Google Scholar · View at Scopus