About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2013 (2013), Article ID 913765, 10 pages
http://dx.doi.org/10.1155/2013/913765
Research Article

Development and Validation of a Stability Indicating RP-UPLC Method for Analysis of Imipramine Hydrochloride in Pharmaceuticals

Department of Chemistry, University of Mysore, Manasagangothri, Mysore 570 006, India

Received 27 May 2013; Accepted 15 July 2013

Academic Editors: R. N. Rao and A. Tsantili-Kakoulidou

Copyright © 2013 H. N. Deepakumari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Hardman, L. E. Limbird, P. B. Molonoff, R. W. R. Ruddon, and A. G. Gilman, Goodman and Gilman's the Pharmacological Basis of therapeutics, McGraw-Hill, New York, NY, USA, 1996.
  2. European Pharmacopoeia, vol. 5, p. 1792, 2005.
  3. S. K. Patel and N. J. Patel, “Simultaneous determination of imipramine hydrochloride and chlordiazepoxide in pharmaceutical preparations by spectrophotometric, rp-hplc, and hptlc methods,” Journal of AOAC International, vol. 93, no. 3, pp. 904–910, 2010. View at Scopus
  4. T. Choudhury, A. Ghosh, J. Deb, and A. Bagchi, “Reverse phase high performance liquid chromatographic method and method validation of imipramine by using single mobile phase,” International Journal of Pharmaceutical Science and Technology, vol. 4, p. 54, 2010.
  5. T. B. Zeugin, K. Brosen, and U. A. Meyer, “Determination of imipramine and seven of its metabolites in human liver microsomes by a high-performance liquid chromatographic method,” Analytical Biochemistry, vol. 189, no. 1, pp. 99–102, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Pommier, A. Sioufi, and J. Godbillon, “Simultaneous determination of imipramine and its metabolite desipramine in human plasma by capillary gas chromatography with mass-selective detection,” Journal of Chromatography B, vol. 703, no. 1-2, pp. 147–155, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. R. F. Suckow and T. B. Cooper, “Simultaneous determination of imipramine, desipramine, and their 2-hydroxy metabolites in plasma by ion-pair reversed-phase high-performance liquid chromatography with amperometric detection,” Journal of Pharmaceutical Sciences, vol. 70, no. 3, pp. 257–261, 1981. View at Scopus
  8. E. Koyama, Y. Kikuchi, H. Echizen, K. Chiba, and T. Ishizaki, “Simultaneous high-performance liquid chromatography-electrochemical detection determination of imipramine, desipramine, their 2-hydroxylated metabolites, and imipramine N-oxide in human plasma and urine: preliminary application to oxidation pharmacogenetics,” Therapeutic Drug Monitoring, vol. 15, no. 3, pp. 224–235, 1993. View at Scopus
  9. H. A. Heck, N. W. Flynn, and S. E. Buttrill Jr., “Determination of imipramine in plasma by high pressure liquid chromatography and field ionization mass spectrometry: increased sensitivity in comparison with gas chromatography mass spectrometry,” Biomedical Mass Spectrometry, vol. 5, no. 3, pp. 250–257, 1978. View at Scopus
  10. N. Sistovaris, E. E. Dagrosa, and A. Keller, “Thin-layer chromatographic determination of imipramine and desipramine in human plasma and urine at single-dose levels,” Journal of Chromatography, vol. 277, pp. 273–281, 1983. View at Scopus
  11. T. B. Cooper, D. Allen, and G. M. Simpson, “A sensitive GLC method for the determination of imipramine and desmethylimipramine using a nitrogen detector,” Psychopharmacology Communications, vol. 1, no. 4, pp. 445–454, 1975. View at Scopus
  12. D. Alkalay, J. Volk, and S. Carlsen, “A sensitive method for the simultaneous determination in biological fluids of imipramine and desipra mine or clomipramine and N-desmethylclomipramine by gas chromatography mass spectrometry,” Biomedical Mass Spectrometry, vol. 6, no. 5, pp. 200–204, 1979. View at Scopus
  13. D. A. Breutzmann and L. D. Bowers, “Reversed-phase liquid chromatography and gas chromatography/mass fragmentography compared for determination of tricyclic antidepressant drugs,” Clinical Chemistry, vol. 27, no. 11, pp. 1907–1911, 1981. View at Scopus
  14. S. B. Puranik, V. R. Pawar, N. Lalitha, P. N. Sanjay Pai, and G. K. Rao, “Residual solvent analysis in hydrochloride salts of active pharmaceutical ingredients,” Pakistan Journal of Pharmaceutical Sciences, vol. 22, no. 4, pp. 410–414, 2009. View at Scopus
  15. D. Bose, A. Martinavarro-Domínguez, M. Gil-Agustí et al., “Therapeutic monitoring of imipramine and desipramine by micellar liquid chromatography with direct injection and electrochemical detection,” Biomedical Chromatography, vol. 19, no. 5, pp. 343–349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. T. G. Díaz, M. I. Acedo-Valenzuela, N. M. Diez, and A. S. Rodríguez, “Simultaneous differential pulse adsorptive stripping determination of imipramine and its metabolite desipramine by the PLS-1 multivariate method,” Electroanalysis, vol. 23, no. 2, pp. 449–455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. K. Markopoulou, E. T. Malliou, and J. E. Koundourellis, “Application of two chemometric methods for the determination of imipramine, amitriptyline and perphenazine in content uniformity and drug dissolution studies,” Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 2, pp. 249–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. P. Ruiz, C. M. Lozano, A. Sanz, and C. Alonso, “Flow-injection extraction-spectrophotometric determination of imipramine in pharmaceuticals with methyl orange,” Talanta, vol. 41, no. 9, pp. 1523–1527, 1994. View at Scopus
  19. J. M. Garcia Fraga, A. I. Jimenez Abizanda, F. Jimenez Moreno, and J. J. Arias Leon, “Simultaneous determination of imipramine and amitryptiline by derivative spectrophotometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 9, no. 2, pp. 109–115, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. B. A. El Zeany, A. A. Moustafa, and N. F. Farid, “Determination of imipramine in presence of iminodibenzyl and in pharmaceutical dosage form,” Journal of Pharmaceutical and Biomedical Analysis, vol. 33, no. 4, pp. 775–782, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. F. A. El-Yazbi, M. A. Korany, and M. Bedair, “A sensitive colorimetric method for the determination of imipramine hydrochloride and desipramine hydrochloride,” Journal of Clinical and Hospital Pharmacy, vol. 10, no. 4, pp. 373–377, 1985. View at Scopus
  22. B. Starczewska, “Spectrophotometric studies and application of imipramine-eriochrome cyanine R system for determination of imipramine in pharmaceuticals,” Journal of Pharmaceutical and Biomedical Analysis, vol. 23, no. 2-3, pp. 383–386, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. G. N. Reddy, C. Ramesh, T. V. Narayana, K. V. S. P. Rao, and B. G. Rao, “Development of ion-association methods for spectrophotometric assay of imipramine hydrochloride,” International Journal of Chemical Sciences, vol. 9, no. 2, pp. 457–464, 2011. View at Scopus
  24. H. D. Revanasiddappa and B. Manju, “Spectrophotometric determination of some antidepressant drugs using 3-methylbenzothiazolin-2-one hydrazone,” European Journal of Pharmaceutical Sciences, vol. 9, no. 2, pp. 221–225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. ICH Q1A (R2), “Stability Testing of New Drug Substances and Products, 2003,” ICH Q2, (R1), Validation of Analytical Procedures: Text and Methodology, 2005.
  26. T. Q. B. ICH, Validation of Analytical Procedures: Methodology (CPMP/ICH/281/95). Step 4. Consensus Guideline, The European Agency for the Evaluation of Medicinal Products, London, UK, 1996.