About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2014 (2014), Article ID 717019, 11 pages
http://dx.doi.org/10.1155/2014/717019
Research Article

Redox-Reaction Based Spectrophotometric Assay of Isoniazid in Pharmaceuticals

Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India

Received 21 January 2014; Accepted 25 February 2014; Published 22 April 2014

Academic Editors: B. N. Barman, G. Drochioiu, J. V. Garcia Mateo, B. Rittich, and A. Szemik-Hojniak

Copyright © 2014 N. Swamy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Indian Pharmacopoea Vol. I, The controller of Publications. Govt. of India, New Delhi, India, 4th edition, 1996.
  2. British Pharmacopoeia, Volume I and II, Her Majesty’s Stationery Office, London, UK, 2009.
  3. The United States Pharmacopoeia, XXIV Revision, The National Formulary XIX Rockville, USP Convention, 2000.
  4. P. Nagendra, H. S. Yathirajan, K. N. Mohana, and K. S. Rangappa, “Oxidation of isoniazid and glutathione with bromamine-T,” Journal of the Indian Chemical Society, vol. 79, no. 1, pp. 75–78, 2002. View at Scopus
  5. C. R. Raju, H. S. Yathirajan, K. S. Rangappa, K. N. Mohana, and K. M. L. Rai, “Oxidimetric determination of isoniazid and amino acids with bromamine-B in buffer medium,” Oxidation Communications, vol. 24, no. 3, pp. 393–399, 2001. View at Scopus
  6. B. M. Mohan, H. S. Yathirajan, R. Rangaswamy, and J. Jayarama, “Determination of ascorbic acid and isoniazid with n-bromosuccinimide,” Indian Journal of Pharmaceutical Sciences, vol. 46, no. 4, pp. 156–158, 1984. View at Scopus
  7. A. Das and K. S. Boparai, “Titration of thiacetazone and isoniazid with sodium methoxide in non-aqueous medium,” Talanta, vol. 29, no. 1, pp. 57–60, 1982. View at Scopus
  8. U. P. Azad and V. Ganesan, “Efficient electrocatalytic oxidation and selective determination of isoniazid by Fe(tmphen)32+-exchanged Nafion-modified electrode,” Journal of Solid State Electrochemistry, vol. 16, no. 9, pp. 2907–2911, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Shahrokhian and E. Asadian, “Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode,” Electrochimica Acta, vol. 55, no. 3, pp. 666–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Yang, C. Wang, R. Zhang, C. Wang, Q. Qu, and X. Hu, “Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals,” Bioelectrochemistry, vol. 73, no. 1, pp. 37–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Z.-N. Gao, X.-X. Han, H.-Q. Yao, B. Liang, and W.-Y. Liu, “Electrochemical oxidation of isoniazid catalyzed by (FcM)TMA at the platinum electrode and its practical analytical application,” Analytical and Bioanalytical Chemistry, vol. 385, no. 7, pp. 1324–1329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. R. Majidi, A. Jouyban, and K. Asadpour-Zeynali, “Voltammetric behavior and determination of isoniazid in pharmaceuticals by using overoxidized polypyrrole glassy carbon modified electrode,” Journal of Electroanalytical Chemistry, vol. 589, no. 1, pp. 32–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Wahdan, “Voltammetric method for the simultaneous determination of rifampicin and isoniazid in pharmaceutical formulations,” Chemia Analityczna, vol. 50, no. 2, pp. 457–464, 2005. View at Scopus
  14. I. Pasáková, M. Gladziszová, J. Charvátová, J. Stariat, J. Klimeš, and P. Kovaříková, “Use of different stationary phases for separation of isoniazid, its metabolites and vitamin B6 forms,” Journal of Separation Science, vol. 34, no. 12, pp. 1357–1365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Gajendiran and M. M. Abdul Kamal Nazer, “Potentiometric back titration of isoniazid in pharmaceutical dosage forms using copper based mercury film electrode,” Journal of the Korean Chemical Society, vol. 55, no. 4, pp. 620–625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Lakshmi, “Potentiotitrimetric determination of isoniazid using twin copper based mercury film electrode,” Asian Journal of Chemistry, vol. 22, no. 8, pp. 6067–6076, 2010. View at Scopus
  17. P. Riyazuddin and M. M. Abdul Kamal Nazer, “Indirect potentiometric titration of isoniazid in pharmaceutical dosage forms using a copper based mercury film electrode,” Indian Journal of Pharmaceutical Sciences, vol. 60, no. 3, pp. 158–161, 1998. View at Scopus
  18. M. A. Koupparis and T. P. Hadjiioannou, “Indirect potentiometric determination of hydrazine, isoniazid, sulphide and thiosulphate with a chloramine-T ion-selective electrode,” Talanta, vol. 25, no. 8, pp. 477–480, 1978. View at Scopus
  19. P. V. Krishna Rao and G. Bala Bhaskara Rao, “A potentiometric procedure for the assay of isonicotinic acid hydrazide (isoniazid),” The Analyst, vol. 96, no. 147, pp. 712–715, 1971. View at Scopus
  20. W. C. Chen, B. Unnikrishnan, and S. M. Chen, “Electrochemical oxidation and amperometric determination of isoniazid at functionalized multiwalled carbon nanotube modified electrode,” International Journal of Electrochemical Science, vol. 7, no. 10, pp. 9138–9149, 2012.
  21. M. S. M. Quintino and L. Angnes, “Fast BIA-amperometric determination of isoniazid in tablets,” Journal of Pharmaceutical and Biomedical Analysis, vol. 42, no. 3, pp. 400–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Hossein, H. Yahya, and T. Afsaneh, “A selective and simple method for isoniazid spectrofluorimetric determination based on the oxidation by cerium(IV),” Asian Journal of Biochemical and Pharmaceutical Research, vol. 1, no. 2, pp. 712–718, 2011.
  23. J. A. García Bautista, J. V. García Mateo, and J. Martínez Calatayud, “Spectrofluorimetric determination of iproniazid and isoniazid in a FIA system provided with a solid-phase reactor,” Analytical Letters, vol. 31, no. 7, pp. 1209–1218, 1998. View at Scopus
  24. W. Bowan, W. Zhihua, X. Zhonghua et al., “A novel molecularty imprinted electrochemiluminescence sensor for isoniazid detection,” The Analyst, vol. 137, no. 16, pp. 3644–3652, 2012.
  25. J. Xi, B. Shi, X. Ai, and Z. He, “Chemiluminescence detection of isoniazid using Ru(phen)32+-isoniazid-Ce(IV) system,” Journal of Pharmaceutical and Biomedical Analysis, vol. 36, no. 1, pp. 237–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Safavi, M. A. Karimi, and M. R. H. Nezhad, “Flow injection determination of isoniazid using N-bromosuccinimide- and N-chlorosuccinimide-luminol chemiluminescence systems,” Journal of Pharmaceutical and Biomedical Analysis, vol. 30, no. 5, pp. 1499–1506, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Zhang and H. Li, “Flow-injection chemiluminescence sensor for the determination of isoniazid,” Analytica Chimica Acta, vol. 444, no. 2, pp. 287–294, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Zheng, Z. Guo, and Z. Zhang, “Flow-injection electrogenerated chemiluminescence determination of isoniazid using luminol,” Analytical Sciences, vol. 17, no. 9, pp. 1095–1099, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Huang and Z. Zhang, “Flow injection chemiluminescent analysis of isoniazid by direct hexacyanoferrate(III) oxidation,” Analytical Letters, vol. 34, no. 10, pp. 1703–1710, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Huang, Z. Zhang, D. Zhang, and J. Lv, “A flow injection chemiluminescence system for the determination of isoniazid,” Fresenius' Journal of Analytical Chemistry, vol. 368, no. 4, pp. 429–431, 2000. View at Scopus
  31. B. Li, Z. Zhang, X. Zheng, and C. Xu, “Flow injection chemiluminescence determination of isoniazid using on-line electrogenerated manganese(III) as oxidant,” Microchemical Journal, vol. 63, no. 3, pp. 374–380, 1999. View at Scopus
  32. X. Zheng and Z. Zhang, “Flow-injection chemiluminescence determination of isoniazid using on-line electrogenerated BrO- as an oxidant,” The Analyst, vol. 124, no. 5, pp. 763–766, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Huang, C. Zhang, and Z. Zhang, “Flow injection chemiluminescence determination of isoniazid with electrogenerated hypochlorite,” Fresenius' Journal of Analytical Chemistry, vol. 363, no. 1, pp. 126–128, 1999. View at Scopus
  34. J. Ayyappan, P. Umapathi, and S. Darlin Quine, “Development and validation of a stability indicating high-performance liquid chromatography (HPLC) method for the estimation of isoniazid and its related substances in fixed dose combination of isoniazid and ethambutol hydrochloride tablets,” African Journal of Pharmacy and Pharmacology, vol. 5, no. 12, pp. 1513–1521, 2011. View at Scopus
  35. S. Gunasekaran and E. Sailatha, “Estimation of pyrazinamide, isoniazid and rifampicin in pharmaceutical formulations by high performance liquid chromatography method,” Asian Journal of Chemistry, vol. 21, no. 5, pp. 3561–3566, 2009. View at Scopus
  36. B. D. Glass, S. Agatonovic-Kustrin, Y.-J. Chen, and M. H. Wisch, “Optimization of a stability-indicating HPLC method for the simultaneous determination of rifampicin, isoniazid, and pyrazinamide in a fixed-dose combination using artificial neural networks,” Journal of Chromatographic Science, vol. 45, no. 1, pp. 38–44, 2007. View at Scopus
  37. V. D. Gupta and A. Sood, “Chemical stability of isoniazid in an oral liquid dosage form,” International Journal of Pharmacy and Compounding, vol. 9, no. 2, pp. 165–166, 2005.
  38. M. Y. Khuhawar and L. A. Zardari, “Ethyl chloroformate as a derivatizing reagent for the gas chromatographic determination of isoniazid and hydrazine in pharmaceutical preparations,” Analytical Sciences, vol. 24, no. 11, pp. 1493–1496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Y. Khuhawar, L. A. Zardari, and A. J. Laghari, “Capillary gas chromatographic determination of isoniazid in pharmaceutical preparation by pre-column derivatization with acetylacetone,” Asian Journal of Chemistry, vol. 20, no. 8, pp. 5997–6006, 2008. View at Scopus
  40. M. Y. Khuhawar and L. A. Zardari, “Capillary gas chromatographic determination of isoniazid in pharmaceutical preparations and blood precolumn derivazation with trifluoroacetylacetone,” Journal of Food and Drug Analysis, vol. 14, no. 4, pp. 323–328, 2006. View at Scopus
  41. H. Bhutani, S. Singh, S. Vir et al., “LC and LC-MS study of stress decomposition behaviour of isoniazid and establishment of validated stability-indicating assay method,” Journal of Pharmaceutical and Biomedical Analysis, vol. 43, no. 4, pp. 1213–1220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Liu, Z. Fu, and L. Wang, “Capillary electrophoresis analysis of isoniazid using luminol-periodate potassium chemiluminescence system,” Luminescence, vol. 26, no. 6, pp. 397–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Zhang, Y. Xuan, A. Sun, Y. Lv, and X. Hou, “Simultaneous determination of isoniazid and p-aminosalicylic acid by capillary electrophoresis using chemiluminescence detection,” Luminescence, vol. 24, no. 4, pp. 243–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Driouich, T. Takayanagi, M. Mitsuko, O. Oshima, and S. Motomizu, “Investigation of salicylaldehyde-5-sulfonate as a precolumn derivatizing agent for the determination of n-alkane diamines, lysine, diaminopimelic acid, and isoniazid by capillary zone electrophoresis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 30, no. 5, pp. 1523–1530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. D. N. Shetty, N. Badiyadka, and S. Samshuddin, “Novel reagents for the spectrophotometric determination of isoniazid,” ISRN Spectroscopy, vol. 2012, Article ID 869493, 5 pages, 2012. View at Publisher · View at Google Scholar
  46. R. Kashyap, E. V. S. Subrahmanyam, and A. R. Sharbarayam, “Development and validation of new colorimetric method for the estimation of isoniazid in bulk and dosage form,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 3, pp. 688–695, 2012.
  47. E. F. Oga, “Spectrophotometric determination of isoniazid in pure and pharmaceutical formulations using vanillin,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 1, pp. 55–58, 2010. View at Scopus
  48. M. N. Abbas and A. M. A. Homoda, “Spectrophotometric determination of isoniazid in presence of rifampicin in some pharmaceutical preparations and urine, using isatin as a reagent,” Egyptian Journal of Chemistry, vol. 46, no. 1, pp. 57–69, 2003.
  49. P. Nagaraja, K. C. Srinivasa Murthy, and H. S. Yathirajan, “Spectrophotometric determination of isoniazid with sodium 1,2-naphthoquinone-4-sulphonate and cetyltrimethyl ammonium bromide,” Talanta, vol. 43, no. 7, pp. 1075–1080, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. M. S. Kamel, “Spectrophotometric determination of isoniazid in pure form and pharmaceutical preparation,” World Journal of Chemistry, vol. 3, no. 1, pp. 11–16, 2008.
  51. F. M. A. Rind, M. Y. Khuhawar, K. F. Almani, and A. D. Rajpar, “Spectrophotometric determination of isoniazid in dosage forms by derivatization,” Pakistan Journal of Analytical Chemistry, vol. 6, no. 2, pp. 84–88, 2005.
  52. Q.-M. Li and Z.-J. Yang, “Spectrophotometric study of isoniazid by using 1,2-naphthoquinone-4-sulfonic acid sodium as the chemical derivative chromogenic reagent,” Journal of the Chinese Chemical Society, vol. 53, no. 2, pp. 383–389, 2006. View at Scopus
  53. M. Y. Khuhawar, F. M. A. Rind, and K. F. Almani, “Spectrophotometric determination of isoniazid using 6-methyl-2-pyridine carboxaldehyde as a derivatizing reagent,” Journal of Chemical Society of Pakistan, vol. 20, no. 4, pp. 260–263, 1998. View at Scopus
  54. J. T. Stewart and D. A. Settle, “Colorimetric determination of isoniazid with 9 chloroacridine,” Journal of Pharmaceutical Sciences, vol. 64, no. 8, pp. 1403–1405, 1975. View at Scopus
  55. G. K. Naidu, K. Suvardhan, K. S. Kumar, D. Rekha, B. S. Sastry, and P. Chiranjeevi, “Simple sensitive spectrophotometric determination of isoniazid and ritodrine hydrochloride,” Journal of Analytical Chemistry, vol. 60, no. 9, pp. 822–827, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Nagaraja, K. Sunitha, R. Vasantha, and H. Yathirajan, “Novel method for the spectrophotometric determination of isoniazid and ritodrine hydrochloride,” Turkish Journal of Chemistry, vol. 26, no. 5, pp. 743–750, 2002. View at Scopus
  57. B. G. Gowda, M. B. Melwanki, K. C. Ramesh, and J. Keshavayya, “Spectrophotometric determination of isoniazid in pure and pharmaceutical formulations,” Indian Journal of Pharmaceutical Sciences, vol. 65, no. 1, pp. 86–90, 2005.
  58. B. G. Gowda, M. B. Melwanki, J. Seetharamappa, and K. C. Srinivasa Murthy, “Spectrophotometric determination of isoniazid in pure and pharmaceutical formulations,” Analytical Sciences, vol. 18, no. 7, pp. 839–841, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. S. B. Kalia, G. Kaushal, and B. C. Verma, “Spectrophotometric method for the determination of isoniazid,” Journal of the Indian Chemical Society, vol. 83, no. 1, pp. 83–84, 2006. View at Scopus
  60. A. Safavi, M. A. Karimi, M. R. Hormozi Nezhad, R. Kamali, and N. Saghir, “Sensitive indirect spectrophotometric determination of isoniazid,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 60, no. 4, pp. 765–769, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. M. S. Amer, Z. El-Sherif, and M. M. Amer, “Spectrophotometric determination of isoniazid, nalidixic acid and flumequine through ternary complex-formation with Cd(II) and rose Bengal,” Egyptian Journal of Pharmaceutical Sciences, vol. 35, no. 1–6, pp. 627–642, 1994.
  62. M. M. A. Diab, B. N. Barsoum, M. S. Kamel, and S. Z. El-Khateeb, “Spectrophotometric determination of isoniazid and rifampicin,” Bulletin of Faculty of Pharmacy (Assuit Univ.), vol. 46, no. 3, pp. 103–113, 2008.
  63. N. B. Barsoum, M. S. Kamel, and M. M. A. Diab, “Spectrophotometric determination of isoniazid and rifampicin from pharmaceutical preparations and biological fluids,” Research Journal of Agricultural and Biological Sciences, vol. 4, no. 5, pp. 471–484, 2008.
  64. H. Zhang, L. Wu, Q. Li, and X. Du, “Determination of isoniazid among pharmaceutical samples and the patients' saliva samples by using potassium ferricyanide as spectroscopic probe reagent,” Analytica Chimica Acta, vol. 628, no. 1, pp. 67–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Safavi and M. Bagheri, “Design of an optical sensor for indirect determination of isoniazid,” Spectrochimica Acta A, vol. 70, no. 4, pp. 735–739, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Basavaiah and H. C. Prameela, “Spectrophotometric determination of diclofenac sodium using Folin-Ciocalteu reagent in bulk drug and in dosage form,” Eastern Pharmacist, vol. 1, pp. 61–63, 2002.
  67. T. K. Murthy, G. D. Sankar, and Y. S. Rao, “Visible spectrophotometric methods for the determination oftrimetazidine dihydrochloride in pharmaceutical formulations,” Indian Drugs, vol. 39, no. 4, pp. 230–233, 2002. View at Scopus
  68. K. Basavaiah and H. C. Prameela, “Simple spectrophotometric determination of acyclovir in bulk drug and formulations,” IL Farmaco, vol. 57, no. 6, pp. 443–449, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. C. S. P. Sastry and J. S. V. M. Lingeswara Rao, “Spectrophotometric methods for the determination of methotrexate in pharmaceutical formulations,” Analytical Letters, vol. 29, no. 10, pp. 1763–1778, 1996. View at Scopus
  70. C. S. P. Sastry, P. Y. Naidu, and S. S. N. Murty, “Spectrophotometric methods for the determination of omeprazole in bulk form and pharmaceutical formulations,” Talanta, vol. 44, no. 7, pp. 1211–1217, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. C. S. P. Sastry, A. Sailaja, T. T. Rao, and D. M. Krishna, “Three simple spectrophotometric methods for the determination of sulphinpyrazone,” Talanta, vol. 39, no. 6, pp. 709–713, 1992. View at Scopus
  72. S. Raghuveer, A. B. Avadhanulu, and A. R. Pantulu, “Spectrophotometric determination of gliclazide in its pharmaceutical dosage forms using Folin-Ciocalteu reagent,” Eastern Pharmacist, vol. 35, no. 1, pp. 129–130, 1992.
  73. O. Folin and V. Ciocalteu, “On tyrosine and tryptophane determinations in proteins,” Journal of Biological Chemistry, vol. 73, no. 1, pp. 627–650, 1927.
  74. A. V. Prasad, P. A. Devi, C. S. P. Sastry, and U. V. Prasad, “Assay of minocycline and tylosin using Folin-Ciocalteu reagent,” Eastern Pharmacist, vol. 2, no. 2, pp. 67–68, 2003.
  75. International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, validation of analytical procedures: text and methodology Q2 (R 1), complementary guideline on methodology dated 06 November 1996, London, UK, November 2005.