About this Journal Submit a Manuscript Table of Contents
ISRN Analytical Chemistry
Volume 2014 (2014), Article ID 926213, 10 pages
http://dx.doi.org/10.1155/2014/926213
Research Article

Determination of Phenol and Chlorophenols at Single-Wall Carbon Nanotubes/Poly(3,4-ethylenedioxythiophene) Modified Glassy Carbon Electrode Using Flow Injection Amperometry

1Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
2Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Box 180, Mailroom 127, Roma, Lesotho

Received 28 February 2014; Accepted 19 March 2014; Published 16 April 2014

Academic Editors: P. Campíns-Falcó, F. Kandemirli, and J. J. Santana-Rodríguez

Copyright © 2014 Negussie Negash et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Naczk and F. Shahidi, “Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 5, pp. 1523–1542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Peñalver, E. Pocurull, F. Borrull, and R. M. Marcé, “Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples,” Journal of Chromatography A, vol. 953, no. 1-2, pp. 79–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. W. Muna, V. Quaiserova-Mocko, and G. M. Swain, “The analysis of chlorinated phenol solutions by capillary electrophoresis coupled with direct and indirect amperometric detection using a boron-doped diamond microelectrode,” Electroanalysis, vol. 17, no. 13, pp. 1160–1170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. “Phenols by Gas Chromatography, Capillary Column Technique: Environment Protection Agency Method 804,” Washington, DC, USA, 1995.
  5. C. Proestos, D. Sereli, and M. Komaitis, “Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS,” Food Chemistry, vol. 95, no. 1, pp. 44–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Arribas, M. Martínez-Fernández, and M. Chicharro, “The role of electroanalytical techniques in analysis of polyphenols in wine,” Trends in Analytical Chemistry, vol. 34, pp. 78–95, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J.-S. Park, M. T. Brown, and T. Han, “Phenol toxicity to the aquatic macrophyte Lemna paucicostata,” Aquatic Toxicology, vol. 106-107, pp. 182–188, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Križman, D. Baričevič, and M. Prošek, “Determination of phenolic compounds in fennel by HPLC and HPLC-MS using a monolithic reversed-phase column,” Journal of Pharmaceutical and Biomedical Analysis, vol. 43, no. 2, pp. 481–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Hurtado-Fernández, M. Gómez-Romero, A. Carrasco-Pancorbo, and A. Fernández-Gutiérrez, “Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 5, pp. 1130–1160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Tsuruta, S. Watanabe, and H. Inoue, “Fluorometric determination of phenol and p-cresol in urine by precolumn high-performance liquid chromatography using 4-(N-phthalimidinyl)benzenesulfonyl chloride,” Analytical Biochemistry, vol. 243, no. 1, pp. 86–91, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Pigani, M. Musiani, C. Pirvu, F. Terzi, C. Zanardi, and R. Seeber, “Electro-oxidation of chlorophenols on poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode,” Electrochimica Acta, vol. 52, no. 5, pp. 1910–1918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Maya, J. M. Estela, and V. Cerdà, “Flow analysis techniques as effective tools for the improved environmental analysis of organic compounds expressed as total indices,” Talanta, vol. 81, no. 1-2, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G.-Y. Kim, N. M. Cuong, S.-H. Cho, J. Shim, J.-J. Woo, and S.-H. Moon, “Improvement of an enzyme electrode by poly(vinyl alcohol) coating for amperometric measurement of phenol,” Talanta, vol. 71, no. 1, pp. 129–135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. E. Böyükbayram, S. Kıralp, L. Toppare, and Y. Yaǧci, “Preparation of biosensors by immobilization of polyphenol oxidase in conducting copolymers and their use in determination of phenolic compounds in red wine,” Bioelectrochemistry, vol. 69, no. 2, pp. 164–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Wang, M. Liu, and J. Kan, “Amperometric phenol biosensor based on polyaniline,” Sensors and Actuators B: Chemical, vol. 140, no. 2, pp. 577–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y.-C. Tsai and C.-C. Chiu, “Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds,” Sensors and Actuators B: Chemical, vol. 125, no. 1, pp. 10–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Ozoner, M. Yalvac, and E. Erhan, “Flow injection determination of catechol based on polypyrrole-carbon nanotube-tyrosinase biocomposite detector,” Current Applied Physics, vol. 10, no. 1, pp. 323–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Campuzano, B. Serra, M. Pedrero, F. J. M. de Villena, and J. M. Pingarrón, “Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors,” Analytica Chimica Acta, vol. 494, no. 1-2, pp. 187–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Li, L. S. Chia, N. K. Goh, and S. N. Tan, “Silica sol-gel immobilized amperometric biosensor for the determination of phenolic compounds,” Analytica Chimica Acta, vol. 362, no. 2-3, pp. 203–211, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Rawal, S. Chawl, and C. S. Pundir, “An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract,” Enzyme and Microbial Technology, vol. 51, no. 4, pp. 179–185, 2012. View at Publisher · View at Google Scholar
  21. Y. Li, C. Qin, C. Chen, Y. Fu, M. Ma, and Q. Xie, “Highly sensitive phenolic biosensor based on magnetic polydopamine-laccase-Fe3O4 bionanocomposite,” Sensors and Actuators B: Chemical, vol. 168, pp. 46–53, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Emre, S. Mehmet, A. Baykal, and M. F. Abasıyanık, “A novel amperometric phenol biosensor based on immobilized HRP on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives,” Sensors and Actuators B: Chemical, vol. 173, pp. 396–405, 2012. View at Publisher · View at Google Scholar
  23. T. Spǎtaru and N. Spǎtaru, “Voltammetric detection of phenol at platinum-polytyramine composite electrodes in acidic media,” Journal of Hazardous Materials, vol. 180, no. 1–3, pp. 777–780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. V. S. Vasantha and S.-M. Chen, “Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes,” Journal of Electroanalytical Chemistry, vol. 592, no. 1, pp. 77–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Mehretie, S. Admassie, M. Tessema, and T. Solomon, “Voltammetric determination of paracetamol with poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode,” Analytical and Bioanalytical Electrochemistry, vol. 3, no. 1, pp. 38–50, 2011.
  26. S. Mehretie, S. Admassie, T. Hunde, M. Tessema, and T. Solomon, “Simultaneous determination of N-acetyl-p-aminophenol and p-aminophenol with poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode,” Talanta, vol. 85, no. 3, pp. 1376–1382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Mehretie, S. Admassie, M. Tessema, and T. Solomon, “Electrochemical study of niclosamide at poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode,” Sensors and Actuators B: Chemical, vol. 168, pp. 97–102, 2012. View at Publisher · View at Google Scholar
  28. J. Wang, R. P. Deo, and M. Musameh, “Stable and sensitive electrochemical detection of phenolic compounds at carbon nanotube modified glassy carbon electrodes,” Electroanalysis, vol. 15, no. 23-24, pp. 1830–1834, 2003. View at Scopus
  29. S. K. Vashist, D. Zheng, K. al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, “Advances in carbon nanotube based electrochemical sensors for bioanalytical applications,” Biotechnology Advances, vol. 29, no. 2, pp. 169–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Schnorr and T. M. Swager, “Emerging applications of carbon nanotubes,” Chemistry of Materials, vol. 23, no. 3, pp. 646–657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. T.-M. Wu, H.-L. Chang, and Y.-W. Lin, “Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity,” Composites Science and Technology, vol. 69, no. 5, pp. 639–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Sundari and P. Manisankar, “Development of ultrasensitive surfactants doped poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotube sensor for the detection of pyrethroids and an organochlorine pesticide,” Journal of Applied Electrochemistry, vol. 41, no. 1, pp. 29–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. S. Arribas, E. Bermejo, M. Chicharro et al., “Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in polyethylenimine as detectors in flow systems,” Analytica Chimica Acta, vol. 596, no. 2, pp. 183–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Qu, M. Yang, J. Jiang, G. Shen, and R. Yu, “Amperometric biosensor for chorine based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film,” Analytical Biochemistry, vol. 344, no. 1, pp. 108–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. S. Wang, P. Y. Chen, T. T. Huang, and M. S. Lin, “Enzymeless flow injection analysis of 2,4,6-trichlorophenol based on preoxidation cerium (IV) nitrate,” International Journal of Electrochemical Science, vol. 7, pp. 9113–9121, 2012.
  36. M. A. Heras, S. Lupu, L. Pigani et al., “A poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode coating in the electrooxidation of phenol,” Electrochimica Acta, vol. 50, no. 7-8, pp. 1685–1691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, “Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties,” Progress in Polymer Science, vol. 35, no. 3, pp. 357–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. R. S. Freire, N. Duran, and L. T. Kubota, “Development of a laccase-based flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of Kraft E1 paper mill effluent,” Analytica Chimica Acta, vol. 463, no. 2, pp. 229–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Ren, T.-F. Kang, R. Xue, C.-N. Ge, and S.-Y. Cheng, “Biosensor based on a glassy carbon electrode modified with tyrosinase immmobilized on multiwalled carbon nanotubes,” Microchimica Acta, vol. 174, no. 3-4, pp. 303–309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. P. H. Pérez, M. S.-P. López, E. López-Cabarcos, and B. López-Ruiz, “Amperometric tyrosinase biosensor based on polyacrylamide microgels,” Biosensors and Bioelectronics, vol. 22, no. 3, pp. 429–439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Korkut, B. Keskinler, and E. Erhan, “An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives,” Talanta, vol. 76, no. 5, pp. 1147–1152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Zhao, D. Wu, and J. Zhi, “A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds,” Bioelectrochemistry, vol. 75, no. 1, pp. 44–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Huang, Y. Qu, R. Li, J. Shen, and L. Zhu, “Biosensor based on horseradish peroxidase modified carbon nanotubes for determination of 2,4-dichlorophenol,” Microchimica Acta, vol. 162, no. 1-2, pp. 261–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. A. S. Arribas, M. Moreno, E. Bermejo et al., “Application of carbon nanotube-modified electrodes as electrochemical sensors for the continuous monitoring of 2,4-dichlorophenol,” Electroanalysis, vol. 23, no. 1, pp. 237–244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Zhang, J. Lei, H. Jua, and C. Wang, “Electrochemical sensor based on chlorohemin modified molecularly imprinted microgel for determination of 2,4-dichlorophenol,” Analytica Chimica Acta, vol. 786, pp. 16–21, 2013. View at Publisher · View at Google Scholar
  46. D. Vega, L. Agüí, A. González-Cortés, P. Yáñez-Sedeño, and J. M. Pingarrón, “Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes,” Talanta, vol. 71, no. 3, pp. 1031–1038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. S. Freire, N. Durán, and L. T. Kubota, “Electrochemical biosensor-based devices for continuous phenols monitoring in environmental matrices,” Journal of the Brazilian Chemical Society, vol. 13, no. 4, pp. 456–462, 2002. View at Scopus