About this Journal Submit a Manuscript Table of Contents
ISRN Anatomy
Volume 2013 (2013), Article ID 828969, 5 pages
http://dx.doi.org/10.5402/2013/828969
Clinical Study

Anatomical Variations in the Branching Pattern of Human Aortic Arch: A Cadaveric Study from Central India

1Department of Anatomy, L.N. Medical College, Kolar Road, Bhopal, India
2Department of Biochemistry, L.N. Medical College, Kolar Road, Bhopal, India
3Department of Preventive and Social Medicine, L.N. Medical College, Kolar Road, Bhopal, India
4Department of Ear, Nose and Throat, L.N. Medical College, Kolar Road, Bhopal, India

Received 19 July 2013; Accepted 10 August 2013

Academic Editors: C. Casteleyn and M. Nakamura

Copyright © 2013 Virendra Budhiraja et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Variations of the branches of aortic arch are due to alteration in the development of certain branchial arch arteries during embryonic period. Knowledge of these variations is important during aortic instrumentation, thoracic, and neck surgeries. In the present study we observed these variations in fifty-two cadavers from Indian populations. In thirty-three (63.5%) cadavers, the aortic arch showed classical branching pattern which includes brachiocephalic trunk, left common carotid artery, and left subclavian artery. In nineteen (36.5%) cadavers it showed variations in the branching pattern, which include the two branches, namely, left subclavian artery and a common trunk in 19.2% cases, four branches, namely, brachiocephalic trunk, left common carotid artery, left vertebral artery, and left subclavian artery in 15.3% cases, and the three branches, namely, common trunk, left vertebral artery, and left subclavian artery in 1.9% cases.

1. Introduction

Aortic arch (AA) is located in the superior mediastinum. In 65–80% of the cases the three branches arise from aortic arch, namely, the brachiocephalic trunk (BCT), the left common carotid artery (LCCA), and the left subclavian artery (LSA). The point of origin of BCT trunk lies to the right of midvertebral line and that of LCCA and LSA to the left of midvertebral line. Variations in the branching pattern of the AA range from differences in the distance between origins of different branches to the number of branches [1, 2]. The anatomical variations in the branching pattern of AA are significant for diagnostic and surgical procedures in the thorax and neck. The present study describes the AA branching pattern in cadavers from central India and discusses the findings according to their embryological and clinical implications.

2. Material and Method

The study was conducted on fifty-two cadavers at the Department of Anatomy, L.N. Medical College and research centre, Bhopal, India. The thoracic cavity was opened by cutting through the costochondral junctions and removing the sternum and costal cartilages. The lungs were removed, superior vena cava and brachiocephalic veins cleared, and pericardium opened to expose ascending aorta. Fibro fatty tissue and nerves were removed to clarify the branches of aortic arch and variations in branching pattern observed.

3. Results

In thirty-three (63.5%) cadavers the AA showed classical branching pattern of BCT, LCCA, and LSA (Figure 1). Nineteen (36.5%) cadavers showed variations in the branching pattern as ten (19.2%) cadavers had two branches, namely, LSA and a common trunk (CT) that gave origin to BCT and LCCA (Figure 2), eight (15.3%) cadavers had four branches, namely, BCT, LCCA, Left vertebral artery (LVA), and LSA (Figure 3), and one (1.9%) cadavers showed three branches, namely, CT, LVA, and LSA (Figure 4). The point of origin of BCT lies to the right of midvertebral line in fifty cases, but in two (3.8%) cases the point of origin was to the left of midvertebral line (Figure 5); here BCT crossed obliquely upward in front of trachea to reach from left to right side.

828969.fig.001
Figure 1: Aortic arch showing classical branching pattern. BCT: brachiocephalic trunk, LCCA: left common carotid artery, LSA: left subclavian artery, and TR: trachea.
828969.fig.002
Figure 2: Aortic arch showing two branches (common trunk for brachiocephalic trunk and left common carotid artery). CT: common trunk, BCT: brachiocephalic trunk, LCCA: left common carotid artery, LSA: left subclavian artery, and TR: trachea.
828969.fig.003
Figure 3: Aortic arch showing four branches. BCT: brachiocephalic trunk, LCCA: left common carotid artery, LVA: left vertebral artery, and LSA: left subclavian artery.
828969.fig.004
Figure 4: Aortic arch showing three branches (common trunk for brachiocephalic trunk and left common carotid artery). CT: common trunk, BCT: brachiocephalic trunk, LCCA: left common carotid artery, LSA: left subclavian artery, LVA: left vertebral artery, and TR: trachea.
828969.fig.005
Figure 5: Point of origin of Brachiocephalic trunk lying left to midvertebral line. BCT: brachiocephalic trunk, LCCA: left common carotid artery, LSA: left subclavian artery, and TR: trachea.

4. Discussion

The AA usually gives three branches, namely, the BCT, LCCA, and LSA. In the present study the usual three-branch pattern was observed only in 63.5% cases; however in 36.5% cases the aortic arch showed variations from usual branching pattern which was significantly higher when compared with previous studies involving different population groups (Table 1) [28].

tab1
Table 1: Proportion of variant branching of aortic arch in different populations.

The most common variant branching pattern which we observed in our study was the two-branch pattern. The two branches were the LSA and CT giving origin to BCT and LCCA. CT giving origin to BCT and LCCA which was previously reported by a number of authors in their case reports [1517]. The results of the previous studies describing two-branch pattern in different population group varied from 1% to 28% as summarized in Table 2 [4, 5, 711].

tab2
Table 2: Incidence of two aortic arch branches in different populations.

Developmentally the two-branch pattern of the AA may be explained as follows. Aortic sac normally bifurcates into left and right limbs. Left limb of aortic sac forms the part of arch that intervenes between the origin of BCT and LCCA. If the aortic sac fails to bifurcate, then the LCCA will connect to aortic sac directly, resulting in bicarotid trunk or common trunk giving origin to BCT and LCCA as observed in 19.2% cases in our study [18, 19]. The approximation of LCCA to BCT is an important observation while invading the AA and its branches with instrument as all cases are susceptible to surgical attack [14, 20]. Nonrecognition of a critical AA at surgery may cause fatal consequences [5]. Sometimes such AA anomalies are clinically useful, as catheterization of LCCA originating from BCT or CT can be achieved without catheter exchange [9].

The next common pattern of branching of AA in our study was four-branche pattern. The four branches include BCT, LCCA, LVA, and LSA from right to left. The incidence of LVA taking origin from AA between origin of LCCA and LSA was significantly high in our study in comparison to previous studies in different population group (Table 3) [2, 4, 6, 1014].

tab3
Table 3: Incidence of four aortic arch branches in different populations.

Developmentally the first part of LVA develops from proximal part of dorsal branch of seventh cervical segmental artery proximal to postcostal anastomosis. The second part is derived from longitudinal communications of the postcostal anastomosis. In the present study the left sixth segmental artery might have persisted as the first part of vertebral artery [21], or there is increased absorption of embryonic tissue of LSA between origins from the aortic arch to the origin of vertebral artery resulting in direct origin of the LVA from aortic arch [20].

The vertebral arteries arise from the superoposterior aspect of the first part of subclavian artery. The vessel takes a vertical posterior course to enter into the foramen transversarium of sixth cervical vertebra. The segment of the artery from its origin at subclavian artery to its respective transverse foramen is called the pretransverse or prevertebral segment [12]. The prevertebral segment of LVA of aortic origin is frequently affected by atherosclerosis [22]. Abnormal origin of vertebral artery may also favour cerebral disorder because of alterations in cerebral hemodynamic [23].

The third interesting finding in the present study was the occurrence of three branches, namely, CT, LVA, and LSA from right to left in 1.9% cases. Normally the point of origin of BCT lies to the right of midvertebral line; but in 3.8% cases we observed it to the left of midvertebral line, here BCT crossed obliquely upward in front of trachea to reach from left to right side. The shifting of BCT from right to left at origin may be explained as the cranial end of aortic sac drawn out into right and left limbs as the neck lengthens. The right limb becomes the BCT, and the left limb forms the part of definitive arch of aorta, which lies between the BCT and LCCA. By three years of age, growth of aortic arch causes the BCT to move cephaled, to the right and anterior away from trachea. In the present study in 3.8% cases the right limb of aortic sac deviates a little to the left of midline and to compensate for this abnormal origin of BCT takes an abnormal course [24]. Such anomalies of BCT are of vital significance during surgeries of throat and even more important in percutaneous dilatational tracheostomy, which has gained wide acceptance due to relative speed, simplicity, and ability to perform it on bedside as these variant anatomy may block the site for tracheostomy [25]. Knowledge of such variations of great vessels is of vital interest to the surgeons because a minor accidental injury of the vessels causes sudden massive hemorrhage [26].

Conflict of Interests

There is no conflict of interests.

References

  1. H. A. Alsaif and W. S. Ramadan, “An anatomical study of the aortic arch variations,” Journal of King Abdulaziz University, vol. 17, no. 2, pp. 37–54, 2010.
  2. I.-Y. Shin, Y.-G. Chung, W.-H. Shin, S.-B. Im, S.-C. Hwang, and B.-T. Kim, “A morphometric study on cadaveric aortic arch and its major branches in 25 Korean adults: the perspective of endovascular surgery,” Journal of Korean Neurosurgical Society, vol. 44, no. 2, pp. 78–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. N. R. Grande, A. Costa e Silva, A. S. Pereira, and A. P. Aguas, “Variations in the anatomical organization of the human aortic arch. A study in a Portuguese population,” Bulletin de l"Association des Anatomistes, vol. 79, no. 244, pp. 19–22, 1995. View at Scopus
  4. M. L. Nelson and C. D. Sparks, “Unusual aortic arch variation: distal origin of common carotid arteries,” Clinical Anatomy, vol. 14, no. 1, pp. 62–65, 2001.
  5. K. S. Satyapal, S. Singaram, P. Partab, J. M. Kalideen, and J. V. Robbs, “Aortic arch branch variations—case report and arteriographic analysis,” South African Journal of Surgery, vol. 41, no. 2, pp. 48–50, 2003. View at Scopus
  6. J. S. Gielecki, R. Wilk, B. Syc, M. Musiał-Kopiejka, and A. Piwowarczyk-Nowak, “Digital-image analysis of the aortic arch's development and its variations,” Folia Morphologica, vol. 63, no. 4, pp. 449–454, 2004. View at Scopus
  7. K. I. Natsis, I. A. Tsitouridis, M. V. Didagelos, A. A. Fillipidis, K. G. Vlasis, and P. D. Tsikaras, “Anatomical variations in the branches of the human aortic arch in 633 angiographies: clinical significance and literature review,” Surgical and Radiologic Anatomy, vol. 31, no. 5, pp. 319–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Ogeng'o, B. O. Olabu, P. M. Gatonga, and J. K. Munguti, “Branching pattern of aortic arch in a kenyan population,” Journal of Morphological Sciences, vol. 27, no. 2, pp. 51–55, 2010. View at Scopus
  9. W. B. Moskowitz and O. Topaz, “The implications of common brachiocephalic trunk on associated congenital cardiovascular defects and their management,” Cardiology in the Young, vol. 13, no. 6, pp. 537–543, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Z. Makhanya, R. T. Mamogale, and N. Khan, “Variants of the left aortic arch branches,” The South African Journal of Radiology, vol. 8, no. 4, pp. 10–12, 2004.
  11. C. Bhattarai and P. P. Poudel, “Study on the variation of branching pattern of arch of aorta in Nepalese,” Nepal Medical College Journal, vol. 12, no. 2, pp. 84–86, 2010. View at Scopus
  12. C. Matula, S. Trattnig, M. Tschabitscher, J. D. Day, and W. T. Koos, “The course of the prevertebral segment of the vertebral artery: anatomy and clinical significance,” Surgical Neurology, vol. 48, no. 2, pp. 125–131, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Voster, P. T. Duplooy, and J. H. Meiring, “Abnormal origin of internal thoracic and vertebral arteries,” Clinical Anatomy, vol. 11, no. 1, pp. 33–37, 1998.
  14. K. Bhatia, M. N. Ghabriel, and M. Henneberg, “Anatomical variations in the branches of the human aortic arch: a recent study of a South Australian population,” Folia Morphologica, vol. 64, no. 3, pp. 217–223, 2005. View at Scopus
  15. G. L. Shiva Kumar, N. Pamidi, S. N. Somayaji, S. Nayak, and V. R. Vollala, “Anomalous branching pattern of the aortic arch and its clinical applications,” Singapore Medical Journal, vol. 51, no. 11, pp. e182–e183, 2010. View at Scopus
  16. M. Manyama, P. Rambau, J. Gilyoma, and W. Mahalu, “A variant branching pattern of the Aortic Arch: a case report,” Journal of Cardiothoracic Surgery, vol. 6, no. 1, article 29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Ö. Karabulut, K. Iltimur, and M. Cudi Tuncer, “Coexisting of aortic arch variation of the left common carotid artery arising from brachiocephalic trunk and absence of the main branches of right subclavian artery: a review of the literature,” Romanian Journal of Morphology and Embryology, vol. 51, no. 3, pp. 569–572, 2010. View at Scopus
  18. S. R. Nayak, M. M. Pai, L. V. Prabhu, S. D'Costa, and P. Shetty, “Anatomical organization of aortic arch variations in the India: embryological basis and review,” Jornal Vascular Brasileiro, vol. 5, no. 2, pp. 95–100, 2006. View at Scopus
  19. G. A. Poultsides, E. D. Lolis, J. Vasquez, A. D. Drezner, and D. Venieratos, “Common origins of carotid and subclavian arterial systems: report of a rare aortic arch variant,” Annals of Vascular Surgery, vol. 18, no. 5, pp. 597–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Suresh, N. Ovchinnikov, and A. McRae, “Variations in the branching pattern of the aortic arch in three Trinidadians,” West Indian Medical Journal, vol. 55, no. 5, pp. 351–353, 2006. View at Scopus
  21. H. K. Panicker, A. Tarnekar, V. Dhawane, and S. K. Ghosh, “Anomalous origin of left vertebral artery-embryological basis and applied aspect—a case report,” Journal of the Anatomical Society of India, vol. 51, no. 2, pp. 234–235, 2002.
  22. G. Vicko, I. Goran, M. Damjan, and P. Sanja, “Anomalous origin of both vertebral arteries,” Clinical Anatomy, vol. 12, no. 4, pp. 281–284, 1999.
  23. L. Bernardi and P. Dettori, “Angiographic study of a rare anomalous origin of the vertebral artery,” Neuroradiology, vol. 9, no. 1, pp. 43–47, 1975. View at Scopus
  24. R. K. Gupta and C. D. Mehta, “Anomalous origin and potentially hazardous course of the brachiocephalic trunk,” Journal of the Anatomical Society of India, vol. 56, no. 2, pp. 38–41, 2007.
  25. G. A. Mukadam and E. Hoskins, “Aberrant brachio-cephalic artery precluding placement of tracheostomy,” Anaesthesia, vol. 57, no. 3, pp. 297–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. K. Muhammad, E. Major, A. Wood, and D. W. Patton, “Percutaneous dilatational tracheostomy: Haemorrhagic complications and the vascular anatomy of the anterior neck. A review based on 497 cases,” International Journal of Oral and Maxillofacial Surgery, vol. 29, no. 3, pp. 217–222, 2000. View at Scopus