About this Journal Submit a Manuscript Table of Contents
ISRN Anesthesiology
Volume 2011 (2011), Article ID 510297, 7 pages
http://dx.doi.org/10.5402/2011/510297
Research Article

Xenon Upregulates Hypoxia Inducible Factor 1 Alpha in Neonatal Rat Brain under Normoxic Conditions

1Department of Physiology and Biochemistry, School of Medicine, University of Pisa, Pisa, Italy
2Department of Anesthesiology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
3Division of Surgical Molecular and Ultrastructural Pathology, School of Medicine, University of Pisa, Pisa, Italy
4The Anaesthetics, Pain Medicine, and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, Chelsea & Westminster Hospital, London, UK
5Surgical Pathology Unit, Department of Oncology, ASL no. 1, Massa-Carrara, Italy

Received 20 October 2011; Accepted 9 November 2011

Academic Editors: J.-H. Baumert and C.-T. Wu

Copyright © 2011 Simona Valleggi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. Homi, N. Yokoo, D. Ma et al., “The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice,” Anesthesiology, vol. 99, no. 4, pp. 876–881, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Ma, S. Wilhelm, M. Maze, and N. P. Franks, “Neuroprotective and neurotoxic properties of the “inert” gas, xenon,” British Journal of Anaesthesia, vol. 89, no. 5, pp. 739–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Ma, H. Yang, J. Lynch, N. P. Franks, M. Maze, and H. P. Grocott, “Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat,” Anesthesiology, vol. 98, no. 3, pp. 690–698, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Petzelt, P. Blom, W. Schmehl, J. Müller, and W. J. Kox, “Prevention of neurotoxicity in hypoxic cortical neurons by the noble gas xenon,” Life Sciences, vol. 72, no. 17, pp. 1909–1918, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Wilhelm, D. Ma, M. Maze, and N. P. Franks, “Effects of xenon on in vitro and in vivo models of neuronal injury,” Anesthesiology, vol. 96, no. 6, pp. 1485–1491, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Ma, M. Hossain, A. Chow et al., “Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia,” Annals of Neurology, vol. 58, no. 2, pp. 182–193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Ma, M. Hossain, G. K. J. Pettet et al., “Xenon preconditioning reduces brain damage from neonatal asphyxia in rats,” Journal of Cerebral Blood Flow & Metabolism, vol. 26, no. 2, pp. 199–208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. N. C. Weber, O. Toma, J. I. Wolter, N. M. Wirthle, W. Schlack, and B. Preckel, “Mechanisms of xenon- and isoflurane-induced preconditioning—a potential link to the cytoskeleton via the MAPKAPK-2/HSP27 pathway,” British Journal of Pharmacology, vol. 146, no. 3, p. 445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Julier, R. da Silva, C. Garcia et al., “Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study,” Anesthesiology, vol. 98, no. 6, pp. 1315–1327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Kersten, T. J. Schmeling, P. S. Pagel, G. J. Gross, and D. C. Warltier, “Isoflurane mimics ischemic preconditioning via activation of K(ATP) channels: reduction of myocardial infarct size with an acute memory phase,” Anesthesiology, vol. 87, no. 2, pp. 361–370, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. H. J. Steiger and D. Hänggi, “Ischaemic preconditioning of the brain, mechanisms and applications,” Acta Neurochirurgica, vol. 149, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Uecker, R. Da Silva, T. Grampp, T. Pasch, M. C. Schaub, and M. Zaugg, “Translocation of protein kinase C isoforms to subcellular targets in ischemic and anesthetic preconditioning,” Anesthesiology, vol. 99, no. 1, pp. 138–147, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. F. R. Sharp, R. Ran, A. Lu et al., “Hypoxic preconditioning protects against ischemic brain injury,” NeuroRx, vol. 1, no. 1, pp. 26–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. B. Stein, X. L. Tang, Y. Guo, Y. T. Xuan, B. Dawn, and R. Bolli, “Delayed adaptation of the heart to stress: late preconditioning,” Stroke, vol. 35, no. 11, pp. 2676–2679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Q. Liu, R. Sheng, and Z. H. Qin, “The neuroprotective mechanism of brain ischemic preconditioning,” Acta Pharmacologica Sinica, vol. 30, no. 8, pp. 1071–1080, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Cattano, P. Williamson, K. Fukui et al., “Potential of xenon to induce or to protect against neuroapoptosis in the developing mouse brain,” Canadian Journal of Anesthesia, vol. 55, no. 7, pp. 429–436, 2008. View at Scopus
  17. D. Ma, P. Williamson, A. Januszewski et al., “Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain,” Anesthesiology, vol. 106, no. 4, pp. 746–753, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Dingley, J. Tooley, H. Porter, and M. Thoresen, “Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia,” Stroke, vol. 37, no. 2, pp. 501–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Cattano, S. Valleggi, D. Ma et al., “Xenon induces transcription of ADNP in neonatal rat brain,” Neuroscience Letters, vol. 440, no. 3, pp. 217–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Valleggi, A. O. Cavazzana, R. Bernardi et al., “Xenon up-regulates several genes that are not up-regulated by nitrous oxide,” Journal of Neurosurgical Anesthesiology, vol. 20, no. 4, pp. 226–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. G. L. Semenza, “Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1,” Annual Review of Cell and Developmental Biology, vol. 15, pp. 551–578, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Swiech, M. Perycz, A. Malik, and J. Jaworski, “Role of mTOR in physiology and pathology of the nervous system,” Biochimica et Biophysica Acta, vol. 1784, no. 1, pp. 116–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Ma, T. Lim, J. Xu et al., “Xenon preconditioning protects against renal ischemic-reperfusion injury via hif-1α activation,” Journal of the American Society of Nephrology, vol. 20, no. 4, pp. 713–720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Bernaudin, Y. Tang, M. Reilly, E. Petit, and F. R. Sharp, “Brain genomic response following hypoxia and re-oxygenation in the neonatal rat: identification of genes that might contribute to hypoxia-induced ischemic tolerance,” The Journal of Biological Chemistry, vol. 277, no. 42, pp. 39728–39738, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Cattano, S. Valleggi, A. O. Cavazzana et al., “Xenon exposure in the neonatal rat brain: effects on genes that regulate apoptosis,” Minerva Anestesiologica, vol. 77, no. 6, pp. 571–578, 2011.
  26. N. M. Jones, E. M. Lee, T. G. Brown, B. Jarrott, and P. M. Beart, “Hypoxic preconditioning produces differential expression of hypoxia-inducible factor-1α (HIF-1α) and its regulatory enzyme HIF prolyl hydroxylase 2 in neonatal rat brain,” Neuroscience Letters, vol. 404, no. 1-2, pp. 72–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Grimm, A. Wenzel, N. Acar, S. Keller, M. Seeliger, and M. Gassmann, “Hypoxic preconditioning and erythropoietin protect retinal neurons from degeneration,” Advances in Experimental Medicine and Biology, vol. 588, pp. 119–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Limatola, P. Ward, D. Cattano et al., “Xenon preconditioning confers neuroprotection regardless of gender in a mouse model of transient middle cerebral artery occlusion,” Neuroscience, vol. 165, no. 3, pp. 874–881, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Pore, Z. Jiang, H. K. Shu, E. Bernhard, G. D. Kao, and A. Maity, “Akt1 activation can augment hypoxia-inducible factor-1α expression by increasing protein translation through a mammalian target of rapamycin-independent pathway,” Molecular Cancer Research, vol. 4, no. 7, pp. 471–479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. K. J. D. Lang, A. Kappel, and G. J. Goodall, “Hypoxia-inducible factor-1α mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia,” Molecular Biology of the Cell, vol. 13, no. 5, pp. 1792–1801, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Huang, B. Li, W. Li, H. Guo, and F. Zou, “ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity,” Carcinogenesis, vol. 30, no. 5, pp. 737–744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. O. Fedele, M. L. Whitelaw, and D. J. Peet, “Regulation of gene expression by the hypoxia-inducible factors,” Molecular Interventions, vol. 2, no. 4, pp. 229–243, 2002. View at Scopus
  33. Y. S. Chun, M. S. Kim, and J. W. Park, “Oxygen-dependent and -independent regulation of HIF-1alpha,” Journal of Korean Medical Science, vol. 17, no. 5, pp. 581–588, 2002. View at Scopus