About this Journal Submit a Manuscript Table of Contents
ISRN Anesthesiology
Volume 2011 (2011), Article ID 837937, 5 pages
http://dx.doi.org/10.5402/2011/837937
Research Article

Dementia Enhances Inhibitory Actions of General Anesthetics in Hippocampal Synaptic Transmission

Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan

Received 12 October 2011; Accepted 1 November 2011

Academic Editor: B. Maciver

Copyright © 2011 Masana Yamada et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Takeda, “Senescence-accelerated mouse (SAM): a biogerontological resource in aging research,” Neurobiology of Aging, vol. 20, no. 2, pp. 105–110, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Takemura, S. Nakamura, I. Akiguchi et al., “β/A4 proteinlike immunoreactive granular structures in the brain of senescence-accelerated mouse,” American Journal of Pathology, vol. 142, no. 6, pp. 1887–1897, 1993. View at Scopus
  3. L. M. Ittner and J. Götz, “Amyloid-β and tau—a toxic pas de deux in Alzheimer's disease,” Nature Reviews Neuroscience, vol. 12, pp. 67–72, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. T. Asahi, K. Hirota, R. Sasaki, Y. Mitsuaki, and S. H. Roth, “Intravenous anesthetics are more effective than volatile anesthetics on inhibitory pathways in rat hippocampal CA1,” Anesthesia and Analgesia, vol. 102, no. 3, pp. 772–778, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. Wakasugi, K. Hirota, S. H. Roth, and Y. Ito, “The effects of general anesthetics on excitatory and inhibitory synaptic transmission in area CA1 of the rat hippocampus in vitro,” Anesthesia and Analgesia, vol. 88, no. 3, pp. 676–680, 1999. View at Scopus
  6. K. Hirota, R. Sasaki, S. H. Roth, and M. Yamazaki, “Presynaptic actions of general anesthetics are responsible for frequency-dependent modification of synaptic transmission in the rat hippocampal CA1,” Anesthesia and Analgesia, vol. 110, no. 6, pp. 1607–1613, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. T. A. Ryan and S. J. Smith, “Vesicle pool mobilization during action potential firing at hippocampal synapses,” Neuron, vol. 14, no. 5, pp. 983–989, 1995. View at Scopus
  8. C. A. Barnes, G. Rao, and B. L. McNaughton, “Increased electrotonic coupling in aged rat hippocampus: a possible mechanism for cellular excitability changes,” Journal of Comparative Neurology, vol. 259, no. 4, pp. 549–558, 1987. View at Scopus
  9. M. P. Mattson and T. Magnus, “Ageing and neuronal vulnerability,” Nature Reviews Neuroscience, vol. 7, no. 4, pp. 278–294, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. P. Mattson, “Pathways towards and away from Alzheimer's disease,” Nature, vol. 430, no. 7000, pp. 631–639, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. D. J. Nutt, M. Besson, S. J. Wilson, G. R. Dawson, and A. R. Lingford-Hughes, “Blockade of alcohol's amnestic activity in humans by an α5 subtype benzodiazepine receptor inverse agonist,” Neuropharmacology, vol. 53, no. 7, pp. 810–820, 2007. View at Publisher · View at Google Scholar · View at PubMed
  12. N. Collinson, F. M. Kuenzi, W. Jarolimek et al., “Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor,” Journal of Neuroscience, vol. 22, no. 13, pp. 5572–5580, 2002.
  13. J. R. Atack, “Preclinical and clinical pharmacology of the GABAA receptor α5 subtype-selective inverse agonist α5IA,” Pharmacology and Therapeutics, vol. 125, no. 1, pp. 11–26, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. V. Y. Cheng, L. J. Martin, E. M. Elliott et al., “α5GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate,” Journal of Neuroscience, vol. 26, no. 14, pp. 3713–3720, 2006. View at Publisher · View at Google Scholar · View at PubMed