About this Journal Submit a Manuscript Table of Contents
ISRN Artificial Intelligence
Volume 2012 (2012), Article ID 389540, 8 pages
http://dx.doi.org/10.5402/2012/389540
Research Article

Personalized Recommendation in Interactive Visual Analysis of Stacked Graphs

1DHCJAC, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-877, Japan
2ISE, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-877, Japan

Received 14 October 2011; Accepted 2 November 2011

Academic Editors: J. A. Hernandez, W. Lam, A. Salmerón, and L. S. Wang

Copyright © 2012 Alejandro Toledo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Thomas and K. A. Cook, Illuminating the Path: The Research and Development Agenda for Visual Analytics, vol. 54, no. 2, IEEE, 2005.
  2. N. H. Riche, B. Lee, and C. Plaisant, “Understanding interactive legends: a comparative evaluation with standard widgets,” Computer Graphics Forum, vol. 29, no. 3, pp. 1193–1202, 2010. View at Publisher · View at Google Scholar
  3. F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon, “Manyeyes: a site for visualization at internet scale,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, pp. 1121–1128, 2007.
  4. W. Willett, J. Heer, and M. Agrawala, “Scented widgets: improving navigation cues with embedded visualizations,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1129–1136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Vuillemot, T. Clement, C. Plaisant, and A. Kumar, “What’s being said near Martha? Exploring name entities in literary text collections,” in Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST '09), pp. 107–114, IEEE, 2009.
  6. P. J. Crossno, D. M. Dunlavy, and T. M. Shead, “LSAView: a tool for visual exploration of latent semantic modeling,” in Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, pp. 83–90, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Koop, C. E. Scheidegger, S. P. Callahan, J. Freire, and C. T. Silva, “VisComplete: automating suggestions for visualization pipelines,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 6, Article ID 4658192, pp. 1691–1698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Gotz, M. X. Zhou, and V. Aggarwal, “Interactive visual synthesis of analytic knowledge,” in Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST '06), pp. 51–58, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Yang, E. Rundensteiner, and M. Ward, “Analysis guided visual exploration of multivariate data,” in Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, pp. 83–90, Citeseer, 2007.
  10. M. Claypool, P. Le, M. Wased, and D. Brown, “Implicit interest indicators,” in Proceedings of the 6th International Conference on Intelligent User Interfaces (IUI '01), pp. 33–40, ACM, New York, NY, USA, January 2001. View at Scopus
  11. D. Kelly and J. Teevan, “Implicit feedback for inferring user preference: a bibliography,” SIGIR Forum, vol. 37, no. 2, pp. 18–28, 2003.
  12. M. Morita and Y. Shinoda, “Information filtering based on user behavior analysis and best match text retrieval,” in Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '94), pp. 272–281, Springer, New York, NY, USA, 1994.
  13. J. Parsons, P. Ralph, and K. Gallagher, “Using viewing time to infer user preference in recommender systems,” in Proceedings of the AAAI Workshop on Semantic Web Personalization, vol. WS-04-09, pp. 52–63, American Association for Artificial Intelligence, 2004.
  14. J. Heer, F. B. Viégas, and M. Wattenberg, “Voyagers and voyeurs: supporting asynchronous collaborative visualization,” Communications of the ACM, vol. 52, no. 1, pp. 87–97, 2009.
  15. M. Wattenberg and J. Kriss, “Designing for social data analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 4, pp. 549–557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Havre, E. Hetzler, P. Whitney, and L. Nowell, “ThemeRiver: visualizing thematic changes in large document collections,” IEEE Transactions on Visualization and Computer Graphics, vol. 8, no. 1, pp. 9–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Byron and M. Wattenberg, “Stacked graphs—Geometry & aesthetics,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 6, Article ID 4658136, pp. 1245–1252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Heer, N. Kong, and M. Agrawala, “Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations,” in Proceedings of the 27th International Conference on Human Factors in Computing Systems, pp. 1303–1312, ACM, 2009.
  19. J. A. Jacobs, “Long-term trends in occupational segregation by sex,” American Journal of Sociology, vol. 95, no. 1, pp. 160–173, 1989. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Charles and D. Grusky, Occupational Ghettos: The Worldwide Segregation of Women and Men, Stanford University Press, 2005.