About this Journal Submit a Manuscript Table of Contents
ISRN Astronomy and Astrophysics
Volume 2012 (2012), Article ID 894056, 7 pages
http://dx.doi.org/10.5402/2012/894056
Research Article

An Endoreversible Thermodynamic Model Applied to the Convective Zone of the Sun

1Departamento de Formación Básica, Escuela Superior de Cómputo del IPN, Avenue Miguel Bernard s/n., Esquire Juan de Dios Bátiz, U.P. Zacatenco, 07738 México, DF, Mexico
2Departamento de Física, Escuela Superior de Física y Matemáticas del IPN, Edif. 9, U.P. Zacatenco, 07738 México, DF, Mexico

Received 22 December 2011; Accepted 22 January 2012

Academic Editors: M. Ding and A. Pamyatnykh

Copyright © 2012 J. Ortuño-Araujo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Gordon and Y. Zarmi, “Wind energy as a solar-driven heat engine: a thermodynamic approach,” American Journal of Physics, vol. 57, pp. 995–998, 1989.
  2. A. De Vos and G. Flater, “The maximum efficiency of the conversion of solar energy into wind energy,” American Journal of Physics, vol. 59, pp. 751–754, 1991.
  3. A. De Vos , Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, UK, 1992.
  4. A. De Vos and P. van del Wel, “Endoreversible models of the conversion of solar energy into wind energy,” Journal of Non-Equilibrium Thermodynamics, vol. 17, pp. 77–89, 1992.
  5. A. De Vos and P. van der Wel, “The efficiency of the conversion of solar energy into wind energy by means of Hadley cells,” Theoretical and Applied Climatology, vol. 46, no. 4, pp. 193–202, 1993. View at Publisher · View at Google Scholar
  6. M. A. Barranco-Jiménez and F. Angulo-Brown, “A nonendoreversible model for wind energy as a solar-driven heat engine,” Journal of Applied Physics, vol. 80, no. 9, pp. 4872–4876, 1996.
  7. M. A. Barranco-Jiménez and F. Angulo-Brown, “A simple model on the influence of the greenhouse effect on the efficiency of solar-to-wind energy conversion,” Il Nuovo cimento della Società Italiana di Fisica, vol. 26, no. 5, p. 235, 2003.
  8. M. A. Barranco-Jiménez, J. C. Chimal-Eguía, and F. Angulo-Brown, “The Gordon and Zarmi model for convective atmospheric cells under the ecological criterion applied to the planets of the solar system,” Revista Mexicana de Fisica, vol. 52, no. 3, pp. 205–212, 2006. View at Scopus
  9. A. Raval and V. Ramanathan, “Observational determination of the greenhouse effect,” Nature, vol. 342, no. 6251, pp. 758–761, 1989. View at Publisher · View at Google Scholar · View at Scopus
  10. M. H. Rubin, “Optimal configuration of a class of irreversible heat engines—I,” Physical Review A, vol. 19, no. 3, pp. 1272–1276, 1979. View at Publisher · View at Google Scholar
  11. F. Angulo-Brown, “An ecological optimization criterion for finite-time heat engines,” Journal of Applied Physics, vol. 69, no. 11, pp. 7465–7469, 1991. View at Publisher · View at Google Scholar
  12. F. Curzon and B. Ahlborn, “Efficiency of a Carnot engine at maximum power output,” American Journal of Physics, vol. 43, no. 1, p. 22, 1975.
  13. L. A. Arias-Hernández and F. Angulo-Brown, “A general property of endoreversible thermal engines,” Journal of Applied Physics, vol. 81, no. 7, pp. 2973–2979, 1997. View at Scopus
  14. B. W. Carrol and D. A. Ostlie, An Introduction to Modern Astrophysics, Pearson-Adisson Wesley, San Francisco, Calif, USA, 2007.
  15. D. Gutkowicz-Krusin, I. Procaccia, and J. Ross, “On the efficiency of rate processes. Power and efficiency of heat engines,” The Journal of Chemical Physics, vol. 69, no. 9, pp. 3898–3906, 1978. View at Scopus
  16. M. R. Gustavson, “Limits to wind power utilization,” Science, vol. 204, no. 4388, pp. 13–17, 1979. View at Scopus
  17. A. Curry and P. J. Wester, Thermodynamics of Atmospheres & Oceans, International Geiphysics Series, Academic Press, 1999.
  18. E. Lorentz, Dynamic of Climate, vol. 86, Pergamon Press, New York, NY, USA, 1960.
  19. L. Schulman, “A theoretical study of the efficiency of the general circulation,” Journal of the Atmospheric Sciences, vol. 34, pp. 559–580, 1977.
  20. S. R. Caplan and A. Essig, Bioenergectics and Linear Nonequilibrium Thermodynamics, Harvard University Press, Cambridge, Mass, USA, 1983.
  21. F. Angulo-Brown, M. Santillán, and E. Calleja-Quevedo, “Thermodynamic optimality in some biochemical reactions,” Il Nuovo Cimento D, vol. 17, no. 1, pp. 87–90, 1995. View at Publisher · View at Google Scholar
  22. F. Angulo-Brown, L. A. Arias-Hernández, and M. Santillán, “On some connections between first order irreversible thermodynamics and finite-time thermodynamics,” Revista Mexicana de Fisica, vol. 48, pp. 182–192, 2002.
  23. M. Santillán, L. A. Arias-Hernández, and F. Angulo-Brown, “Some optimization criteria for biological systems in linear irreversible thermodynamics,” Il Nuovo cimento della Società Italiana di Fisica D, vol. 19, no. 1, pp. 99–109, 1997. View at Scopus
  24. Encyclopaedia Britannica, vol. 2, William Benton Publisher, 15th edition, 1991.
  25. D. J. Mullan, Physics of the Sun: A First Course, CRC Press, Boca Raton, Fla, USA, 2010.
  26. P. A. Sturrock, T. E. Holzer, D. M. Mihalas, and R. K. Ulrich, “Physics of the Sun, Vol. I: The solar interior,” B. M. McCormac, Ed., Loockheed Palo Alto Research Laboratory, Calif, USA, 1986.