About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2012 (2012), Article ID 506160, 36 pages
http://dx.doi.org/10.5402/2012/506160
Review Article

Ganglioside Biochemistry

Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany

Received 18 September 2012; Accepted 9 October 2012

Academic Editors: H. Itoh and B. Penke

Copyright © 2012 Thomas Kolter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Fahy, S. Subramaniam, H. A. Brown et al., “A comprehensive classification system for lipids,” Journal of Lipid Research, vol. 46, no. 5, pp. 839–861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Wickramasinghe and J. F. Medrano, “Primer on genes encoding enzymes in sialic acid metabolism in mammals,” Biochimie, vol. 93, pp. 1641–1646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Miyagi and K. Yamaguchi, “Sialic acids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 297–322, Elsevier, Oxford, UK, 2007.
  4. E. Klenk, “Über die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehirnlipoiden,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 273, pp. 76–86, 1942.
  5. E. Klenk, “Über die Natur der Phosphatide und anderer Lipide des Gehirns und der Leber bei der Niemann-Pick'schen Krankheit,” Zeitschrift für Physiologische Chemie, vol. 235, pp. 24–25, 1935.
  6. E. Klenk, “Über die Ganglioside des Gehirns bei der infantilen amaurotischen Idiotie vom Typ Tay-Sachs,” Berichte der Deutschen Chemischen Gesellschaft, vol. 75, pp. 1632–1636, 1942.
  7. E. Klenk, “Die Fettstoffe des Gehirns bei amaurotischer Idiotie und Niemann-Pick'scher Krankheit,” Berichte über die Gesamte Physiologie und Experimentelle, vol. 96, pp. 659–660, 1937.
  8. G. Blix, “Über die Kohlenhydratgruppen des Submaxillarismucins,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 240, pp. 43–54, 1936.
  9. R. Kuhn and H. Wiegandt, “Die Konstitution der Ganglio-N-tetraose und des Gangliosides GI,” Chemische Berichte, vol. 96, pp. 866–880, 1963.
  10. L. Svennerholm, “Chromatographic separation of human brain gangliosides,” Journal of Neurochemistry, vol. 10, pp. 613–623, 1963. View at Scopus
  11. L. Svennerholm, “The gangliosides,” Journal of Lipid Research, vol. 5, pp. 145–155, 1964. View at Scopus
  12. H. Jatzkewitz and K. Sandhoff, “On a biochemically special form of infantile amaurotic idiocy,” Biochimica et Biophysica Acta, vol. 70, no. C, pp. 354–356, 1963. View at Scopus
  13. K. Sandhoff, “Variation of β-N-acetylhexosaminidase-pattern in Tay-Sachs disease,” FEBS Letters, vol. 4, no. 4, pp. 351–354, 1969. View at Scopus
  14. K. Sandhoff, U. Andreae, and H. Jatzkewitz, “Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs,” Pathologia Europaea, vol. 3, no. 2, pp. 278–285, 1968. View at Scopus
  15. M. Cohen and A. Varki, “The sialome-far more than the sum of its parts,” OMICS, vol. 14, no. 4, pp. 455–464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. K. Yu, M. Yanagisawa, and T. Ariga, “Glycosphingolipid structures,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 1, pp. 73–122, Elsevier, Oxford, UK, 2007.
  17. R. K. Yu, Y. T. Tsai, T. Ariga, and M. Yanagisawa, “Structures, biosynthesis, and functions of gangliosides—an overview,” Journal of Oleo Science, vol. 60, pp. 537–544, 2011.
  18. R. Schauer, “Sialic acids: fascinating sugars in higher animals and man,” Zoology, vol. 107, no. 1, pp. 49–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Angata and A. Varki, “Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective,” Chemical Reviews, vol. 102, no. 2, pp. 439–469, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Schauer, “Sialic acids as regulators of molecular and cellular interactions,” Current Opinion in Structural Biology, vol. 19, no. 5, pp. 507–514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Kohla and R. Schauer, “Sialic acids in gangliosides: origin and function,” in Neuroglycobiology, Oxford University Press, Oxford, UK, 2005.
  22. M. A. Chester, “Nomenclature of glycolipids,” Pure and Applied Chemistry, vol. 69, pp. 2475–2487, 1997.
  23. S. Ando, “Neuronal dysfunction with aging and its amelioration,” Proceedings of the Japan Academy B, vol. 88, pp. 266–282, 2012.
  24. H. Suila, V. Pitkänen, T. Hirvonen et al., “Are globoseries glycosphingolipids SSEA-3 and -4 markers for stem cells derived from human umbilical cord blood?” Journal of Molecular Cell Biology, vol. 3, no. 2, pp. 99–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. T. Li, “On the structural elucidation of GalNAc-GD1a,” Neurochemical Research, vol. 37, pp. 1150–1153, 2012.
  26. H. Yoshino, T. Ariga, A. Suzuki, R. K. Yu, and T. Miyatake, “Identification of gangliosides recognized by IgG anti-GalNAc-GD1a antibodies in bovine spinal motor neurons and motor nerves,” Brain Research, vol. 1227, no. C, pp. 216–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Kaida, M. Sonoo, G. Ogawa et al., “GM1/GalNAc-GD1a complex: a target for pure motor Guillain-Barré syndrome,” Neurology, vol. 71, no. 21, pp. 1683–1690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. W. Ang, N. Yuki, B. C. Jacobs et al., “Rapidly progressive, predominantly motor Guillain-Barre syndrome with anti-GalNAc-GD1a antibodies,” Neurology, vol. 53, no. 9, pp. 2122–2127, 1999. View at Scopus
  29. N. Yuki and H. P. Hartung, “Medical progress guillain-barre syndrome,” The New England Journal of Medicine, vol. 366, pp. 2294–2304, 2012.
  30. T. Yamazaki, M. Suzuki, T. Irie, T. Watanabe, H. Mikami, and S. Ono, “Amyotrophic lateral sclerosis associated with IgG anti-GalNAc-GD1a antibodies,” Clinical Neurology and Neurosurgery, vol. 110, no. 7, pp. 722–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. T. Li, K. Maskos, C. W. Chou, R. B. Cole, and S. C. Li, “Presence of an unusual GM2 derivative, taurine-conjugated GM2, in Tay-Sachs brain,” The Journal of Biological Chemistry, vol. 278, no. 37, pp. 35286–35291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Hakomori, “Structure and functional interaction of glycosphingolipids inducing signal transduction to affect cellular phenotype,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 4, pp. 267–288, Elsevier, Oxford, UK, 2007. View at Publisher · View at Google Scholar
  33. T. Nakao, K. Kon, S. Ando et al., “Novel lacto-ganglio type gangliosides with G(M2)-epitope in bovine brain which react with IgM from a patient of the amyotrophic lateral sclerosis- like disorder,” The Journal of Biological Chemistry, vol. 268, no. 28, pp. 21028–21034, 1993. View at Scopus
  34. R. Kannagi, N. A. Cochran, F. Ishigami et al., “Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells,” The EMBO Journal, vol. 2, no. 12, pp. 2355–2361, 1983. View at Scopus
  35. S. B. Levery, M. E. K. Salyan, S. J. Steele et al., “A revised structure for the disialosyl globo-series gangliosides of human erythrocytes and chicken skeletal muscle,” Archives of Biochemistry and Biophysics, vol. 312, no. 1, pp. 125–134, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. A. E. Stapleton, M. R. Stroud, S. I. Hakomori, and W. E. Stamm, “The globoseries glycosphingolipid sialosyl galactosyl globoside is found in urinary tract tissues and is a preferred binding receptor in vitro for uropathogenic Escherichia coli expressing pap-encoded adhesins,” Infection and Immunity, vol. 66, no. 8, pp. 3856–3861, 1998. View at Scopus
  37. M. Yanagisawa, “Stem cell glycolipids,” Neurochemical Research, vol. 36, pp. 1623–1635, 2011.
  38. M. Sugita, “Studies on the glycosphingolipids of the starfish, Asterina pectinifera: III. Isolation and structural studies of two novel gangliosides containing internal sialic acid residues,” Journal of Biochemistry, vol. 86, no. 3, pp. 765–772, 1979. View at Scopus
  39. G. P. Smirnova and N. K. Kochetkov, “A novel sialoglycolipid from hepatopancreas of the starfish Patiria pectinifera,” Biochimica et Biophysica Acta, vol. 618, no. 3, pp. 486–495, 1980. View at Scopus
  40. R. Higuchi, M. Inagaki, K. Yamada, and T. Miyamoto, “Biologically active gangliosides from echinoderms,” Journal of Natural Medicines, vol. 61, no. 4, pp. 367–370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Hori and M. Sugita, “Sphingolipids in lower animals,” Progress in Lipid Research, vol. 32, no. 1, pp. 25–45, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Itonori and M. Sugita, “Glycophylogenetic aspects of lower animals,” in Comprehensive Glycoscience, J. P. Kamerling, J. P. Kamerling, G. J. Boons et al., Eds., vol. 3, pp. 253–284, Elsevier, Oxford, UK, 2007. View at Publisher · View at Google Scholar
  43. M. Inagaki, M. Shiizaki, T. Hiwatashi, T. Miyamoto, and R. Higuchi, “Constituents of crinoidea. 5. Isolation and structure of a new glycosyl inositolphosphoceramide-type ganglioside from the feather star Comanthina schlegeli,” Chemical and Pharmaceutical Bulletin, vol. 55, no. 11, pp. 1649–1651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Arao, M. Inagaki, T. Miyamoto, and R. Higuchi, “Constituents of crinoidea. 3. Isolation and structure of a glycosyl inositolphosphoceramide-type ganglioside with neuritogenic activity from the feather star Comanthus japonica,” Chemical and Pharmaceutical Bulletin, vol. 52, no. 9, pp. 1140–1142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Kaneko, K. Yamada, T. Miyamoto, M. Inagaki, and R. Higuchi, “Neuritogenic activity of gangliosides from echinoderms and their structure-activity relationship,” Chemical and Pharmaceutical Bulletin, vol. 55, no. 3, pp. 462–463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Kaneko, F. Kisa, K. Yamada, T. Miyamoto, and R. Higuchi, “Structure of a new neuritogenic-active ganglioside from the sea cucumber Stichopus japonicus,” European Journal of Organic Chemistry, no. 6, pp. 1004–1008, 2003. View at Scopus
  47. R. Higuchi, S. Matsumoto, R. Isobe, and T. Miyamoto, “Structure determination of the major component of the starfish ganglioside molecular species LG-2 by tandem mass spectrometry,” Tetrahedron, vol. 51, no. 33, pp. 8961–8968, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Inagaki, T. Miyamoto, R. Isobe, and R. Higuchi, “Biologically active glycosides from asteroidea, 43. Isolation and structure of a new neuritogenic-active ganglioside molecular species from the starfish Linckia laevigata,” Chemical and Pharmaceutical Bulletin, vol. 53, no. 12, pp. 1551–1554, 2005. View at Scopus
  49. J. R. Rich and S. G. Withers, “A chemoenzymatic total synthesis of the neurogenic starfish ganglioside LLG-3 using an engineered and evolved synthase,” Angewandte Chemie, vol. 51, pp. 8640–8643, 2012.
  50. H. Tamai, H. Ando, H. N. Tanaka et al., “The total synthesis of the neurogenic ganglioside LLG-3 isolated from the starfish Linckia laevigata,” Angewandte Chemie, vol. 50, no. 10, pp. 2330–2333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. S. T. Pruett, A. Bushnev, K. Hagedorn et al., “Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols,” Journal of Lipid Research, vol. 49, no. 8, pp. 1621–1639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Dasgupta, S. B. Levery, and E. L. Hogan, “3-O-acetyl-sphingosine-series myelin glycolipids: characterization of novel 3-O-acetyl-sphingosine galactosylceramide,” Journal of Lipid Research, vol. 43, no. 5, pp. 751–761, 2002. View at Scopus
  53. H. Hama, “Fatty acid 2-Hydroxylation in mammalian sphingolipid biology,” Biochimica et Biophysica Acta, vol. 1801, no. 4, pp. 405–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Mahfoud, A. Manis, B. Binnington, C. Ackerley, and C. A. Lingwood, “A major fraction of glycosphingolipids in model and cellular cholesterol-containing membranes is undetectable by their binding proteins,” The Journal of Biological Chemistry, vol. 285, no. 46, pp. 36049–36059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. C. A. Lingwood, A. Manis, R. Mahfoud, F. Khan, B. Binnington, and M. Mylvaganam, “New aspects of the regulation of glycosphingolipid receptor function,” Chemistry and Physics of Lipids, vol. 163, no. 1, pp. 27–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. D. J. Chinnapen, W. T. Hsieh, Y. M. Te Welscher et al., “Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1,” Developmental Cell, vol. 23, pp. 573–586, 2012.
  57. I. Kracun, H. Rosner, C. Cosovic, and A. Stavljenic, “Topographical atlas of the gangliosides of the adult human brain,” Journal of Neurochemistry, vol. 43, no. 4, pp. 979–989, 1984. View at Scopus
  58. H. Rahmann, “Brain gangliosides and memory formation,” Behavioural Brain Research, vol. 66, no. 1-2, pp. 105–116, 1995. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Wang, “Sialic acid is an essential nutrient for brain development and cognition,” Annual Review of Nutrition, vol. 29, pp. 177–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Hirschberg, R. Zisling, G. Van Echten-Deckert, and A. H. Futerman, “Ganglioside synthesis during the development of neuronal polarity: major changes occur during axonogenesis and axon elongation, but not during dendrite growth or synaptogenesis,” The Journal of Biological Chemistry, vol. 271, no. 25, pp. 14876–14882, 1996. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Iwamori, J. Shimomura, S. Tsuyuhara, and Y. Nagai, “Gangliosides of various rat tissues: distribution of ganglio-N-tetraose-containing gangliosides and tissue-characteristic composition of gangliosides,” Journal of Biochemistry, vol. 95, no. 3, pp. 761–770, 1984. View at Scopus
  62. T. Yamashita, R. Wada, T. Sasaki et al., “A vital role for glycosphingolipid synthesis during development and differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9142–9147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. D. H. Kwak, B. B. Seo, K. T. Chang, and Y. K. Choo, “Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation,” Experimental and Molecular Medicine, vol. 43, no. 7, pp. 379–388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. S. I. Hakomori, “Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism,” Cancer Research, vol. 56, no. 23, pp. 5309–5318, 1996. View at Scopus
  65. E. Posse de Chaves and S. Sipione, “Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction,” FEBS Letters, vol. 584, no. 9, pp. 1748–1759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. R. K. Yu, Y. Nakatani, and M. Yanagisawa, “The role of glycosphingolipid metabolism in the developing brain,” Journal of Lipid Research, vol. 50, pp. S440–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Segler Stahl, J. C. Webster, and E. G. Brunngraber, “Changes in the concentration and composition of human brain gangliosides with aging,” Gerontology, vol. 29, no. 3, pp. 161–168, 1983. View at Scopus
  68. E. Ozkok, S. Cengiz, and B. Guvener, “Age-dependent changes in liver ganglioside levels,” Journal of Basic & Clinical Physiology & Pharmacology, vol. 10, pp. 337–344, 1999.
  69. H. J. Senn, M. Orth, E. Fitzke, H. Wieland, and W. Gerok, “Ganglioside in normal human serum. Concentration, pattern and transport by lipoproteins,” European Journal of Biochemistry, vol. 181, no. 3, pp. 657–662, 1989. View at Scopus
  70. G. Muller, “Microvesicles/exosomes as potential novel biomarkers of metabolic diseases,” Diabetes, Metabolic Syndrome and Obesity, vol. 5, pp. 247–282, 2012.
  71. C. Dumontet, A. Rebbaa, and J. Portoukalian, “Kinetics and organ distribution of [14C]-sialic acid-GM3 and [3H]-sphingosine-GM1 after intravenous injection in rats,” Biochemical and Biophysical Research Communications, vol. 189, no. 3, pp. 1410–1416, 1992. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Miller-Podraza, R. M. Bradley, and P. H. Fishman, “Biosynthesis and localization of gangliosides in cultured cells,” Biochemistry, vol. 21, no. 14, pp. 3260–3265, 1982. View at Scopus
  73. T. Garofalo, A. Tinari, P. Matarrese et al., “Do mitochondria act as "cargo boats" in the journey of GD3 to the nucleus during apoptosis?” FEBS Letters, vol. 581, no. 21, pp. 3899–3903, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Ledeen and G. Wu, “New findings on nuclear gangliosides: overview on metabolism and function,” Journal of Neurochemistry, vol. 116, no. 5, pp. 714–720, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. N. C. Lucki and M. B. Sewer, “Nuclear sphingolipid metabolism,” Annual Review of Physiology, vol. 74, pp. 131–151, 2012.
  76. G. Kohla, E. Stockfleth, and R. Schauer, “Gangliosides with O-acetylated sialic acids in tumors of neuroectodermal origin,” Neurochemical Research, vol. 27, no. 7-8, pp. 583–592, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Schwegmann-Wessels and G. Herrler, “Sialic acids as receptor determinants for coronaviruses,” Glycoconjugate Journal, vol. 23, no. 1-2, pp. 51–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. N. Malykh, R. Schauer, and L. Shaw, “N-Glycolylneuraminic acid in human tumours,” Biochimie, vol. 83, no. 7, pp. 623–634, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Ghaderi, M. Zhang, N. Hurtado-Ziola, and A. Varki, “Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation,” Biotechnology & Genetic Engineering Reviews, vol. 28, pp. 147–175, 2012.
  80. R. Schauer, G. V. Srinivasan, B. Coddeville, J. P. Zanetta, and Y. Guérardel, “Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus,” Carbohydrate Research, vol. 344, no. 12, pp. 1494–1500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. K. H. Song, Y. J. Kang, U. H. Jin et al., “Cloning and functional characterization of pig CMP- N-acetylneuraminic acid hydroxylase for the synthesis of N-glycolylneuraminic acid as the xenoantigenic determinant in pig-human xenotransplantation,” Biochemical Journal, vol. 427, no. 1, pp. 179–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. G. A. Andrews, P. S. Chavey, J. E. Smith, and L. Rich, “N-glycolylneuraminic acid and N-acetylneuraminic acid define feline blood group A and B antigens,” Blood, vol. 79, no. 9, pp. 2485–2491, 1992. View at Scopus
  83. H. H. Chou, H. Takematsu, S. Diaz et al., “A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11751–11756, 1998. View at Scopus
  84. A. Varki, “Multiple changes in sialic acid biology during human evolution,” Glycoconjugate Journal, vol. 26, no. 3, pp. 231–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Varki, “Uniquely human evolution of sialic acid genetics and biology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, supplement 2, pp. 8939–8946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. S. L. Diaz, V. Padler-Karavani, D. Ghaderi et al., “Sensitive and specific detection of the non-human sialic acid N-Glycolylneuraminic acid in human tissues and biotherapeutic products,” PLoS ONE, vol. 4, no. 1, Article ID e4241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Zarei, J. Müthing, J. Peter-Katalinić, and L. Bindila, “Separation and identification of GM1b pathway Neu5Ac- and Neu5Gc gangliosides by on-line nanoHPLC-QToF MS and tandem MS: toward glycolipidomics screening of animal cell lines,” Glycobiology, vol. 20, no. 1, pp. 118–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Blanco, C. E. Rengifo, M. Cedeño, M. Frómeta, E. Rengifo, and A. Carr, “Immunoreactivity of the 14F7 mab (raised against N-Glycolyl GM3 ganglioside) as a positive prognostic factor in non-small-cell lung cancer,” Pathology Research International, vol. 2012, Article ID 235418, 12 pages, 2012. View at Publisher · View at Google Scholar
  89. S. K. Gross, M. A. Williams, and R. H. McCluer, “Alkali-labile, sodium borohydride-reducible ganglioside sialic acid residues in brain,” Journal of Neurochemistry, vol. 34, no. 6, pp. 1351–1361, 1980. View at Scopus
  90. L. Riboni, S. Sonnino, and D. Acquotti, “Natural occurrence of ganglioside lactones. Isolation and characterization of G(D1b) inner ester from adult human brain,” The Journal of Biological Chemistry, vol. 261, no. 18, pp. 8514–8519, 1986. View at Scopus
  91. G. A. Nores, T. Dohi, M. Taniguchi, and S. I. Hakomori, “Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen,” Journal of Immunology, vol. 139, no. 9, pp. 3171–3176, 1987. View at Scopus
  92. M. Tsuda, T. Terabayashi, and Y. Kawanishi, “Observation of ganglioside lactone formation with CD spectrometry,” Chemistry and Physics of Lipids, vol. 70, no. 1, pp. 95–99, 1994. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Sonnino and V. Chigorno, “Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures,” Biochimica et Biophysica Acta, vol. 1469, no. 2, pp. 63–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. P. Palestini, M. Masserini, A. Fiorilli, E. Calappi, and G. Tettamanti, “Age-related changes in the ceramide composition of the major gangliosides present in rat brain subcellular fractions enriched in plasma membranes of neuronal and myelin origin,” Journal of Neurochemistry, vol. 61, no. 3, pp. 955–960, 1993. View at Scopus
  95. M. Valsecchi, P. Palestini, V. Chigorno, and S. Sonnino, “Age-related changes of the ganglioside long-chain base composition in rat cerebellum,” Neurochemistry International, vol. 28, no. 2, pp. 183–187, 1996. View at Publisher · View at Google Scholar · View at Scopus
  96. P. Palestini, M. Masserini, S. Sonnino, A. Giuliani, and G. Tettamanti, “Changes in the ceramide composition of rat forebrain gangliosides with age,” Journal of Neurochemistry, vol. 54, no. 1, pp. 230–235, 1990. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Sugiura, S. Shimma, Y. Konishi, M. K. Yamada, and M. Setou, “Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus,” PLoS ONE, vol. 3, no. 9, Article ID e3232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. K. Ogawa-Goto, N. Funamoto, T. Abe, and K. Nagashima, “Different ceramide compositions of gangliosides between human motor and sensory nerves,” Journal of Neurochemistry, vol. 55, no. 5, pp. 1486–1493, 1990. View at Scopus
  99. P. McJarrow, N. Schnell, J. Jumpsen, and T. Clandinin, “Influence of dietary gangliosides on neonatal brain development,” Nutrition Reviews, vol. 67, no. 8, pp. 451–463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. R. Rueda, “The role of dietary gangliosides on immunity and the prevention of infection,” British Journal of Nutrition, vol. 98, supplement 1, pp. S68–S73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. H. Farwanah and T. Kolter, “Lipidomics of glycosphingolipids,” Metabolites, vol. 2, pp. 134–164, 2012.
  102. R. Lacomba, J. Salcedo, A. Alegría, M. Jesús Lagarda, R. Barberá, and E. Matencio, “Determination of sialic acid and gangliosides in biological samples and dairy products: a review,” Journal of Pharmaceutical and Biomedical Analysis, vol. 51, no. 2, pp. 346–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. W. Q. Wang and A. Gustafson, “Ganglioside extraction from erythrocytes: a comparison study,” Acta Chemica Scandinavica, vol. 49, no. 12, pp. 929–936, 1995. View at Scopus
  104. L. Svennerholm and P. Fredman, “A procedure for the quantitative isolation of brain gangliosides,” Biochimica et Biophysica Acta, vol. 617, no. 1, pp. 97–109, 1980. View at Scopus
  105. M. C. Byrne, M. Sbaschnig-Agler, and D. A. Aquino, “Procedure for isolation of gangliosides in high yield and purity: simultaneous isolation of neutral glycosphingolipids,” Analytical Biochemistry, vol. 148, no. 1, pp. 163–173, 1985. View at Scopus
  106. J. Folch, M. Lees, and G. H. Sloane Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Scopus
  107. A. E. Manzi and B. K. Hayes, “Unit 17.21A HPLC methods for the fractionation and analysis of negatively charged oligosaccharides and gangliosides,” in Current Protocols in Molecular Biology, chapter 17, 2001. View at Publisher · View at Google Scholar
  108. R. K. Yu and R. W. Ledeen, “Gangliosides of human, bovine, and rabbit plasma,” Journal of Lipid Research, vol. 13, no. 5, pp. 680–686, 1972. View at Scopus
  109. X. Jiang, H. Cheng, K. Yang, R. W. Gross, and X. Han, “Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids,” Analytical Biochemistry, vol. 371, no. 2, pp. 135–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. Z. Vukelic, S. Kalanj-Bognar, M. Froesch, et al., “Human gliosarcoma—associated ganglioside composition is complex and distinctive as evidenced by high-performance mass spectrometric determination and structural characterization,” Glycobiology, vol. 17, no. 5, pp. 504–515, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. F. Scandroglio, N. Loberto, M. Valsecchi, V. Chigorno, A. Prinetti, and S. Sonnino, “Thin layer chromatography of gangliosides,” Glycoconjugate Journal, vol. 26, no. 8, pp. 961–973, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. E. Sisu, C. Flangea, A. Serb, A. Rizzi, and A. D. Zamfir, “High-performance separation techniques hyphenated to mass spectrometry for ganglioside analysis,” Electrophoresis, vol. 32, no. 13, pp. 1591–1609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Tai, I. Kawashima, and K. Ogura, “Anticarbohydrate antibodies,” in Comprehensive Glycoscience, J. P. Kamerling, J. P. Kamerling, G. J. Boons et al., Eds., vol. 3, pp. 765–783, Elsevier, Oxford, UK, 2007. View at Publisher · View at Google Scholar
  114. I. Meisen, M. Mormann, and J. Muthing, “Thin-layer chromatography, overlay technique and mass spectrometry: a versatile triad advancing glycosphingolipidomics,” Biochimica et Biophysica Acta, vol. 1811, no. 11, pp. 875–896, 2011.
  115. T. Valdes-Gonzalez, N. Goto-Inoue, W. Hirano et al., “New approach for glyco- and lipidomics—Molecular scanning of human brain gangliosides by TLC-Blot and MALDI-QIT-TOF MS,” Journal of Neurochemistry, vol. 116, no. 5, pp. 678–683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Kadowaki, J. E. Evans, and R. H. McCluer, “Separation of brain monosialoganglioside molecular species by high-performance liquid chromatography,” Journal of Lipid Research, vol. 25, no. 10, pp. 1132–1139, 1984. View at Scopus
  117. G. Gazzotti, S. Sonnino, and R. Ghidoni, “Separation of ganglioside molecular species, with homogeneous long-chain base composition, by reversed-phase thin-layer chromatography,” Journal of Chromatography, vol. 315, pp. 395–400, 1984. View at Scopus
  118. L. Mauri, M. Valsecchi, R. Casellato, S. C. Li, Y. T. Li, and S. Sonnino, “Procedure for separation of GM2 ganglioside species with different ceramide structures by a flash reversed-phase silica gel liquid chromatography,” Journal of Chromatography B, vol. 796, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. S. B. Levery, “Glycosphingolipid structural analysis and glycosphingolipidomics,” Methods in Enzymology, vol. 405, pp. 300–369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. M. I. Demarco and R. J. Woods, “Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside-protein recognition at membrane surfaces,” Glycobiology, vol. 19, no. 4, pp. 344–355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Varki, “Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 6, Article ID a005462, 2011.
  122. G. Tettamanti, “Ganglioside/glycosphingolipid turnover: new concepts,” Glycoconjugate Journal, vol. 20, no. 5, pp. 301–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. G. Tettamanti, R. Bassi, P. Viani, and L. Riboni, “Salvage pathways in glycosphingolipid metabolism,” Biochimie, vol. 85, no. 3-4, pp. 423–437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. E. C. Mandon, I. Ehses, J. Rother, G. Van Echten, and K. Sandhoff, “Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver,” The Journal of Biological Chemistry, vol. 267, no. 16, pp. 11144–11148, 1992. View at Scopus
  125. A. H. Merrill, “Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics,” Chemical Reviews, vol. 111, pp. 6387–6422, 2011.
  126. G. van Meer and S. Hoetzl, “Sphingolipid topology and the dynamic organization and function of membrane proteins,” FEBS Letters, vol. 584, no. 9, pp. 1800–1805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. H. Ikushiro and H. Hayashi, “Mechanistic enzymology of serine palmitoyltransferase,” Biochimica et Biophysica Acta, vol. 1814, pp. 1474–1480, 2011.
  128. Y. Hirabayashi and S. Furuya, “Roles of l-serine and sphingolipid synthesis in brain development and neuronal survival,” Progress in Lipid Research, vol. 47, no. 3, pp. 188–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. K. Yoshida, S. Furuya, S. Osuka et al., “Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality,” The Journal of Biological Chemistry, vol. 279, no. 5, pp. 3573–3577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. Hirabayashi, “A world of sphingolipids and glycolipids in the brain–novel functions of simple lipids modified with glucose,” Proceedings of the Japan Academy B, vol. 88, pp. 129–143, 2012.
  131. T. D. Mullen, Y. A. Hannun, and L. M. Obeid, “Ceramide synthases at the centre of sphingolipid metabolism and biology,” Biochemical Journal, vol. 441, pp. 789–802, 2012.
  132. L. Zhao, S. D. Spassieva, T. J. Jucius et al., “A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation,” PLoS Genetics, vol. 7, no. 5, Article ID e1002063, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Mizutani, A. Kihara, H. Chiba, H. Tojo, and Y. Igarashi, “2-Hydroxy-ceramide synthesis by ceramide synthase family: enzymatic basis for the preference of FA chain length,” Journal of Lipid Research, vol. 49, no. 11, pp. 2356–2364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. G. Fabrias, J. Munoz-Olaya, F. Cingolani et al., “Dihydroceramide desaturase and dihydrosphingolipids: debutant players in the sphingolipid arena,” Progress in Lipid Research, vol. 51, pp. 82–94, 2012.
  135. K. Hanada, “Intracellular trafficking of ceramide by ceramide transfer protein,” Proceedings of the Japan Academy B, vol. 86, no. 4, pp. 426–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. M. A. Olayioye and A. Hausser, “Integration of non-vesicular and vesicular transport processes at the Golgi complex by the PKD-CERT network,” Biochimica et Biophysica Acta, vol. 1821, pp. 1096–1103, 2012.
  137. K. Hanada, K. Kumagai, N. Tomishige, and T. Yamaji, “CERT-mediated trafficking of ceramide,” Biochimica et Biophysica Acta, vol. 1791, no. 7, pp. 684–691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. J. L. Daniotti and R. Iglesias-Bartolomé, “Metabolic pathways and intracellular trafficking of gangliosides,” IUBMB Life, vol. 63, no. 7, pp. 513–520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. W. W. Young, M. S. Lutz, and W. A. Blackburn, “Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates,” The Journal of Biological Chemistry, vol. 267, no. 17, pp. 12011–12015, 1992. View at Scopus
  140. H. J. F. MacCioni, R. Quiroga, and M. L. Ferrari, “Cellular and molecular biology of glycosphingolipid glycosylation,” Journal of Neurochemistry, vol. 117, no. 4, pp. 589–602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. T. Kolter, R. L. Proia, and K. Sandhoff, “Combinatorial ganglioside biosynthesis,” The Journal of Biological Chemistry, vol. 277, no. 29, pp. 25859–25862, 2002. View at Publisher · View at Google Scholar · View at Scopus
  142. S. C. Basu, “The serendipity of ganglioside biosynthesis: pathway to CARS and HY-CARS glycosyltransferases,” Glycobiology, vol. 1, no. 5, pp. 469–475, 1991. View at Scopus
  143. G. Pohlentz, D. Klein, G. Schwarzmann, D. Schmitz, and K. Sandhoff, “Both GA2, GM2, and GD2 synthases and GM1b, GD1a, and GT1b synthases are single enzymes in Golgi vesicles from rat liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 19, pp. 7044–7048, 1988. View at Scopus
  144. H. Iber, R. Kaufmann, G. Pohlentz, G. Schwarzmann, and K. Sandhoff, “Identity of G(A1), G(M1a) and G(D1b) synthase in Golgi vesicles from rat liver,” FEBS Letters, vol. 248, no. 1-2, pp. 18–22, 1989. View at Scopus
  145. H. Iber and K. Sandhoff, “Identity of G(D1C), G(T1a) and G(Q1b) synthase in Golgi vesicles from rat liver,” FEBS Letters, vol. 254, no. 1-2, pp. 124–128, 1989. View at Publisher · View at Google Scholar · View at Scopus
  146. H. Iber, G. Van Echten, and K. Sandhoff, “Substrate specificity of α2→3-sialyltransferases in ganglioside biosynthesis of rat liver Golgi,” European Journal of Biochemistry, vol. 195, no. 1, pp. 115–120, 1991. View at Publisher · View at Google Scholar · View at Scopus
  147. H. Iber, C. Zacharias, and K. Sandhoff, “The c-series gangliosides G(T3), G(T2) and G(P1c) are formed in rat liver Golgi by the same set of glycosyltransferases that catalyse the biosynthesis of asialo-, a- and b-series gangliosides,” Glycobiology, vol. 2, no. 2, pp. 137–142, 1992. View at Scopus
  148. M. Audry, C. Jeanneau, A. Imberty, A. Harduin-Lepers, P. Delannoy, and C. Breton, “Current trends in the structure-activity relationships of sialyltransferases,” Glycobiology, vol. 21, no. 6, pp. 716–726, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. A. Harduin-Lepers, “Comprehensive analysis of sialyltransferases in vertebrate genomes,” Glycobiology Insights, vol. 2, pp. 29–61, 2010.
  150. L. Svennerholm, B. M. Rynmark, G. Vilbergsson et al., “Gangliosides in human fetal brain,” Journal of Neurochemistry, vol. 56, no. 5, pp. 1763–1768, 1991. View at Scopus
  151. M. Kotani, I. Kawashima, H. Ozawa, T. Terashima, and T. Tai, “Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies,” Glycobiology, vol. 3, no. 2, pp. 137–146, 1993. View at Scopus
  152. T. R. Henion, D. Zhou, D. P. Wolfer, F. B. Jungalwala, and T. Hennet, “Cloning of a Mouse β1,3 N-Acetylglucosaminyltransferase GlcNAc(β1,3)Gal(β1,4)Glc-ceramide Synthase Gene Encoding the Key Regulator of Lacto-series Glycolipid Biosynthesis,” The Journal of Biological Chemistry, vol. 276, no. 32, pp. 30261–30269, 2001. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Togayachi, T. Akashima, R. Ookubo et al., “Molecular Cloning and Characterization of UDP-GlcNAc:Lactosylceramide β1,3-N-Acetylglucosaminyltransferase (β3Gn-T5), an Essential Enzyme for the Expression of HNK-1 and Lewis X Epitopes on Glycolipids,” The Journal of Biological Chemistry, vol. 276, no. 25, pp. 22032–22040, 2001. View at Publisher · View at Google Scholar · View at Scopus
  154. C. T. Kuan, J. Chang, J. E. Mansson et al., “Multiple phenotypic changes in mice after knockout of the B3gnt5 gene, encoding Lc3 synthase—a key enzyme in lacto-neolacto ganglioside synthesis,” BMC Developmental Biology, vol. 10, p. 114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. D. K. H. Chou and F. B. Jungalwala, “N-acetylglucosaminyl transferase regulates the expression of the sulfoglucuronyl glycolipids in specific cell types in cerebellum during development,” The Journal of Biological Chemistry, vol. 271, no. 46, pp. 28868–28874, 1996. View at Publisher · View at Google Scholar · View at Scopus
  156. M. A. Simpson, H. Cross, C. Proukakis et al., “Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase,” Nature Genetics, vol. 36, no. 11, pp. 1225–1229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  157. G. Scheel, E. Acevedo, and E. Conzelmann, “Model for the interaction of membrane-bound substrates and enzymes. Hydrolysis of ganglioside G(D1a) by sialidase of neuronal membranes isolated from calf brain,” European Journal of Biochemistry, vol. 127, no. 2, pp. 245–253, 1982. View at Scopus
  158. G. Zhu, M. L. Allende, E. Jaskiewicz et al., “Two soluble glycosyltransferases glycosylate less efficiently in vivo than their membrane bound counterparts,” Glycobiology, vol. 8, no. 8, pp. 831–840, 1998. View at Publisher · View at Google Scholar · View at Scopus
  159. P. M. Crespo, V. T. Demichelis, and J. L. Daniotti, “Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases,” The Journal of Biological Chemistry, vol. 285, no. 38, pp. 29179–29190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. A. Banchet-Cadeddu, E. Hénon, M. Dauchez, J. H. Renault, F. Monneaux, and A. Haudrechy, “The stimulating adventure of KRN 7000,” Organic and Biomolecular Chemistry, vol. 9, no. 9, pp. 3080–3104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  161. R. Kuhn and H. Wiegandt, “Further gangliosides from the human brain,” Zeitschrift für Naturforschung B, vol. 19, pp. 256–257, 1964. View at Scopus
  162. R. W. Ledeen, R. K. Yu, and L. F. Eng, “Gangliosides of human myelin: sialosylgalactosylceramide (G7) as a major component,” Journal of Neurochemistry, vol. 21, no. 4, pp. 829–839, 1973. View at Scopus
  163. N. Jackman, A. Ishii, and R. Bansal, “Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids,” Physiology, vol. 24, no. 5, pp. 290–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. J. M. Boggs, W. Gao, J. Zhao, H. J. Park, Y. Liu, and A. Basu, “Participation of galactosylceramide and sulfatide in glycosynapses between oligodendrocyte or myelin membranes,” FEBS Letters, vol. 584, no. 9, pp. 1771–1778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. E. N. Maldonado, N. L. Alderson, P. V. Monje, P. M. Wood, and H. Hama, “FA2H is responsible for the formation of 2-hydroxy galactolipids in peripheral nervous system myelin,” Journal of Lipid Research, vol. 49, no. 1, pp. 153–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. R. J. Stewart and J. M. Boggs, “A carbohydrate-carbohydrate interaction between galactosylceramide-containing liposomes and cerebroside sulfate-containing liposomes: dependence on the glycolipid ceramide composition,” Biochemistry, vol. 32, no. 40, pp. 10666–10674, 1993. View at Publisher · View at Google Scholar · View at Scopus
  167. L. Saadat, J. L. Dupree, J. Kilkus et al., “Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice,” GLIA, vol. 58, no. 4, pp. 391–398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. S. Schulte and W. Stoffel, “Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 21, pp. 10265–10269, 1993. View at Publisher · View at Google Scholar · View at Scopus
  169. G. Tennekoon, M. Zaruba, and J. Wolinsky, “Topography of cerebroside sulfotransferase in Golgi-enriched vesicles from rat brain,” Journal of Cell Biology, vol. 97, no. 4, pp. 1107–1112, 1983. View at Scopus
  170. K. N. J. Burger, P. Van Der Bijl, and G. Van Meer, “Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis,” Journal of Cell Biology, vol. 133, no. 1, pp. 15–28, 1996. View at Publisher · View at Google Scholar · View at Scopus
  171. H. Sprong, B. Kruithof, R. Leijendekker, J. W. Slot, G. Van Meer, and P. Van Der Sluijs, “UDP-galactose: ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum,” The Journal of Biological Chemistry, vol. 273, no. 40, pp. 25880–25888, 1998. View at Publisher · View at Google Scholar · View at Scopus
  172. S. I. Chisada, Y. Yoshimura, K. Sakaguchi et al., “Zebrafish and mouse α2,3-sialyltransferases responsible for synthesizing GM4 ganglioside,” The Journal of Biological Chemistry, vol. 284, no. 44, pp. 30534–30546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. B. R. Mullin, D. H. Patrick, C. M. B. Poore, and M. T. Smith, “Prevention of experimental allergic encephalomyelitis by ganglioside G(M4),” Brain Research, vol. 296, no. 1, pp. 174–176, 1984. View at Publisher · View at Google Scholar · View at Scopus
  174. P. Paul, Y. Kamisaka, D. L. Marks, and R. E. Pagano, “Purification and characterization of UDP-glucose:ceramide glucosyltransferase from rat liver Golgi membranes,” The Journal of Biological Chemistry, vol. 271, no. 4, pp. 2287–2293, 1996. View at Publisher · View at Google Scholar · View at Scopus
  175. S. Ichikawa, H. Sakiyama, G. Suzuki, K. I. Hidari, and Y. Hirabayashi, “Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 22, p. 12654, 1996. View at Scopus
  176. D. L. Marks, K. Wu, P. Paul, Y. Kamisaka, R. Watanabe, and R. E. Pagano, “Oligomerization and topology of the Golgi membrane protein glucosylceramide synthase,” The Journal of Biological Chemistry, vol. 274, no. 1, pp. 451–456, 1999. View at Publisher · View at Google Scholar · View at Scopus
  177. D. L. Marks, M. Dominguez, K. Wu, and R. E. Pagano, “Identification of active site residues in glucosylceramide synthase: a nucleotide-binding/catalytic motif conserved with processive β-glycosyltransferases,” The Journal of Biological Chemistry, vol. 276, no. 28, pp. 26492–26498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  178. H. Coste, M. B. Martel, and R. Got, “Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands,” Biochimica et Biophysica Acta, vol. 858, no. 1, pp. 6–12, 1986. View at Scopus
  179. D. Jeckel, “Lactosylceramide is synthesized in the lumen of the Golgi apparatus,” FEBS Letters, vol. 342, no. 1, pp. 91–96, 1994. View at Publisher · View at Google Scholar · View at Scopus
  180. A. Van Helvoort, A. J. Smith, H. Sprong et al., “MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine,” Cell, vol. 87, no. 3, pp. 507–517, 1996. View at Publisher · View at Google Scholar · View at Scopus
  181. G. Van Meer, D. Halter, H. Sprong, P. Somerharju, and M. R. Egmond, “ABC lipid transporters: extruders, flippases, or flopless activators?” FEBS Letters, vol. 580, no. 4, pp. 1171–1177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  182. D. Halter, S. Neumann, S. M. Van Dijk et al., “Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis,” Journal of Cell Biology, vol. 179, no. 1, pp. 101–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. M. Chalat, I. Menon, Z. Turan, and A. K. Menon, “Reconstitution of glucosylceramide flip-flop across endoplasmic reticulum: implications for mechanism of glycosphingolipid biosynthesis,” The Journal of Biological Chemistry, vol. 287, pp. 15523–15532, 2012.
  184. G. D'Angelo, E. Polishchuk, G. D. Tullio et al., “Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide,” Nature, vol. 449, no. 7158, pp. 62–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  185. Y. Yildiz, H. Matern, B. Thompson et al., “Mutation of β-glucosidase 2 causes glycolipid storage disease and impaired male fertility,” Journal of Clinical Investigation, vol. 116, no. 11, pp. 2985–2994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  186. K. Furukawa, A. Tsuchida, and K. Furukawa, “Biosynthesis of glycolipids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 105–114, Elsevier, Oxford, UK, 2007.
  187. M. Takizawa, T. Nomura, E. Wakisaka et al., “cDNA cloning and expression of human lactosylceramide synthase,” Biochimica et Biophysica Acta, vol. 1438, no. 2, pp. 301–304, 1999. View at Publisher · View at Google Scholar · View at Scopus
  188. Y. Hirabayashi, A. Hyogo, T. Nakao et al., “Isolation and characterization of extremely minor gangliosides, G(M1b) and G(D1α), in adult bovine brains as developmentally regulated antigens,” The Journal of Biological Chemistry, vol. 265, no. 14, pp. 8144–8151, 1990. View at Scopus
  189. T. Yamashita, A. Hashiramoto, M. Haluzik et al., “Enhanced insulin sensitivity in mice lacking ganglioside GM3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3445–3449, 2003. View at Publisher · View at Google Scholar · View at Scopus
  190. M. Saito and K. Sugiyama, “Tissue-specific expression of c-series gangliosides in the extraneural system,” Biochimica et Biophysica Acta, vol. 1474, no. 1, pp. 88–92, 2000. View at Publisher · View at Google Scholar · View at Scopus
  191. Y. Hirabayashi, T. Nakao, F. Irie, V. P. Whittaker, K. Kon, and S. Ando, “Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain,” The Journal of Biological Chemistry, vol. 267, no. 18, pp. 12973–12978, 1992. View at Scopus
  192. F. Irie, K. I. P. Jwa Hidari, T. Tai, Y. T. Li, Y. Seyama, and Y. Hirabayashi, “Biosynthetic pathway for a new series of gangliosides, GT1aα and GQ1bα,” FEBS Letters, vol. 351, no. 2, pp. 291–294, 1994. View at Publisher · View at Google Scholar · View at Scopus
  193. E. R. Sturgill, K. Aoki, P. H. Lopez et al., “Biosynthesis of the major brain gangliosides GD1a and GT1b,” Glycobiology, vol. 10, pp. 1289–1301, 2012.
  194. R. L. Proia, “Glycosphingolipid functions: insights from engineered mouse models,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1433, pp. 879–883, 2003. View at Publisher · View at Google Scholar · View at Scopus
  195. S. Ichikawa, N. Nakajo, H. Sakiyama, and Y. Hirabayashi, “A mouse B16 melanoma mutant deficient in glycolipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 7, pp. 2703–2707, 1994. View at Scopus
  196. K. Takamiya, A. Yamamoto, K. Furukawa et al., “Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 21, pp. 12147–12152, 1998. View at Publisher · View at Google Scholar · View at Scopus
  197. K. A. Sheikh, J. Sun, Y. Liu et al., “Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7532–7537, 1999. View at Publisher · View at Google Scholar · View at Scopus
  198. S. Chiavegatto, J. Sun, R. J. Nelson, and R. L. Schnaar, “A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice,” Experimental Neurology, vol. 166, no. 2, pp. 227–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  199. J. Zhao, K. Furukawa, S. Fukumoto et al., “Attenuation of interleukin 2 signal in the spleen cells of complex ganglioside-lacking mice,” The Journal of Biological Chemistry, vol. 274, no. 20, pp. 13744–13747, 1999. View at Publisher · View at Google Scholar · View at Scopus
  200. M. Nagafuku, K. Okuyama, Y. Onimaru et al., “CD4 and CD8 T cells require different membrane gangliosides for activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. E336–E342, 2012.
  201. G. Wu, Z. H. Lu, N. Kulkarni, R. Amin, and R. W. Ledeen, “Mice lacking major brain gangliosides develop parkinsonism,” Neurochemical Research, vol. 36, pp. 1706–1714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  202. J. S. Schneider, A. Kean, and L. DiStefano, “G(M1) ganglioside rescues substantia nigra pars compacta neurons and increases dopamine synthesis in residual nigrostriatal dopaminergic neurons in MPTP-treated mice,” Journal of Neuroscience Research, vol. 42, no. 1, pp. 117–123, 1995. View at Publisher · View at Google Scholar · View at Scopus
  203. Z. Martinez, M. Zhu, S. Han, and A. L. Fink, “GM1 specifically interacts with α-synuclein and inhibits fibrillation,” Biochemistry, vol. 46, no. 7, pp. 1868–1877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. H. Kawai, M. L. Allende, R. Wada et al., “Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures,” The Journal of Biological Chemistry, vol. 276, no. 10, pp. 6885–6888, 2001. View at Publisher · View at Google Scholar · View at Scopus
  205. T. Yamashita, Y. P. Wu, R. Sandhoff et al., “Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2725–2730, 2005. View at Publisher · View at Google Scholar · View at Scopus
  206. T. S. Worgall, “Sphingolipid synthetic pathways are major regulators of lipid homeostasis,” in Sphingolipids and Metabolic Disease, L. A. Cowart, Ed., vol. 721, pp. 139–148, Springer, New York, NY, USA, 2011.
  207. D. K. Breslow and J. S. Weissman, “Membranes in balance: mechanisms of sphingolipid homeostasis,” Molecular Cell, vol. 40, no. 2, pp. 267–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  208. R. K. Yu, E. Bieberich, T. Xia, and G. Zeng, “Regulation of ganglioside biosynthesis in the nervous system,” Journal of Lipid Research, vol. 45, no. 5, pp. 783–793, 2004. View at Publisher · View at Google Scholar · View at Scopus
  209. S. Uemura, S. Yoshida, F. Shishido, and J. I. Inokuchi, “The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity,” Molecular Biology of the Cell, vol. 20, no. 13, pp. 3088–3100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  210. E. Bieberich and R. K. Yu, “Multi-enzyme kinetic analysis of glycolipid biosynthesis,” Biochimica et Biophysica Acta, vol. 1432, no. 1, pp. 113–124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  211. G. van Echten-Deckert and M. Guravi, “Golgi localization of glycosyltransferases involved in ganglioside biosynthesis,” Current Drug Targets, vol. 9, no. 4, pp. 282–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  212. E. Bieberich, S. MacKinnon, J. Silva et al., “Regulation of ganglioside biosynthesis by enzyme complex formation of glycosyltransferases,” Biochemistry, vol. 41, no. 38, pp. 11479–11487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  213. S. Roseman, “The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion,” Chemistry and Physics of Lipids, vol. 5, no. 1, pp. 270–297, 1970. View at Scopus
  214. W. Spessott, P. M. Crespo, J. L. Daniotti, and H. J. Maccioni, “Glycosyltransferase complexes improve glycolipid synthesis,” FEBS Lett, vol. 586, no. 16, pp. 2346–2350, 2012. View at Publisher · View at Google Scholar
  215. C. G. Giraudo, J. L. Daniotti, and H. J. F. Maccioni, “Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1625–1630, 2001. View at Publisher · View at Google Scholar · View at Scopus
  216. C. G. Giraudo and H. J. F. Maccioni, “Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells,” The Journal of Biological Chemistry, vol. 278, no. 41, pp. 40262–40271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  217. E. Monti, M. T. Bassi, N. Papini et al., “Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane,” Biochemical Journal, vol. 349, no. 1, pp. 343–351, 2000. View at Publisher · View at Google Scholar · View at Scopus
  218. Y. Wang, K. Yamaguchi, T. Wada et al., “A close association of the ganglioside-specific sialidase Neu3 with caveolin in membrane microdomains,” The Journal of Biological Chemistry, vol. 277, no. 29, pp. 26252–26259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  219. M. Miyata, M. Kambe, O. Tajima et al., “Membrane sialidase NEU3 is highly expressed in human melanoma cells promoting cell growth with minimal changes in the composition of gangliosides,” Cancer Science, vol. 102, pp. 2139–2149, 2011.
  220. J. Wang, G. Wu, T. Miyagi, Z. H. Lu, and R. W. Ledeen, “Sialidase occurs in both membranes of the nuclear envelope and hydrolyzes endogenous GD1a,” Journal of Neurochemistry, vol. 111, no. 2, pp. 547–554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  221. M. Ito, “Degradation of glycolipids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 193–208, Elsevier, Oxford, UK, 2007.
  222. T. Kolter and K. Sandhoff, “Lysosomal degradation of membrane lipids,” FEBS Letters, vol. 584, no. 9, pp. 1700–1712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  223. W. Furst and K. Sandhoff, “Activator proteins and topology of lysosomal sphingolipid catabolism,” Biochimica et Biophysica Acta, vol. 1126, no. 1, pp. 1–16, 1992. View at Publisher · View at Google Scholar · View at Scopus
  224. A. C. Johansson, H. Appelqvist, C. Nilsson, K. Kågedal, K. Roberg, and K. Öllinger, “Regulation of apoptosis-associated lysosomal membrane permeabilization,” Apoptosis, vol. 15, no. 5, pp. 527–540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  225. W. Möbius, E. van Donselaar, Y. Ohno-Iwashita et al., “Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway,” Traffic, vol. 4, no. 4, pp. 222–231, 2003. View at Scopus
  226. H. D. Gallala and K. Sandhoff, “Biological function of the cellular lipid BMP-BMP as a key activator for cholesterol sorting and membrane digestion,” Neurochemical Research, vol. 36, pp. 1594–1600, 2011.
  227. M. Scherer and G. Schmitz, “Metabolism, function and mass spectrometric analysis of bis(monoacylglycero)phosphate and cardiolipin,” Chemistry and Physics of Lipids, vol. 164, no. 6, pp. 556–562, 2011. View at Publisher · View at Google Scholar · View at Scopus
  228. T. Kobayashi, M. H. Beuchat, J. Chevallier et al., “Separation and characterization of late endosomal membrane domains,” The Journal of Biological Chemistry, vol. 277, no. 35, pp. 32157–32164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  229. P. Saftig and J. Klumperman, “Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function,” Nature Reviews Molecular Cell Biology, vol. 10, no. 9, pp. 623–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  230. P. Saftig, B. Schröder, and J. Blanz, “Lysosomal membrane proteins: life between acid and neutral conditions,” Biochemical Society Transactions, vol. 38, no. 6, pp. 1420–1423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  231. R. Henning and W. Stoffel, “Glycosphingolipids in lysosomal membranes,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 354, no. 7, pp. 760–770, 1973. View at Scopus
  232. E. M. Meier, G. Schwarzmann, W. Furst, and K. Sandhoff, “The human G(M2) activator protein. A substrate specific cofactor of β-hexosaminidase A,” The Journal of Biological Chemistry, vol. 266, no. 3, pp. 1879–1887, 1991. View at Scopus
  233. T. Kolter and K. Sandhoff, “Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 81–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  234. S. Locatelli-Hoops, N. Remmel, R. Klingenstein et al., “Saposin A mobilizes lipids from low cholesterol and high bis(monoacylglycerol)phosphate-containing membranes: patient variant saposin a lacks lipid extraction capacity,” The Journal of Biological Chemistry, vol. 281, no. 43, pp. 32451–32460, 2006. View at Publisher · View at Google Scholar · View at Scopus
  235. N. Remmel, S. Locatelli-Hoops, B. Breiden, G. Schwarzmann, and K. Sandhoff, “Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero) phosphate-rich membranes at acidic pH: unglycosylated patient variant saposin B lacks lipid-extraction capacity,” FEBS Journal, vol. 274, no. 13, pp. 3405–3420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  236. N. Werth, C. G. Schuette, G. Wilkening, T. Lemm, and K. Sandhoff, “Degradation of membrane-bound ganglioside GM2 by β-hexosaminidase A. Stimulation by GM2 activator protein and lysosomal lipids,” The Journal of Biological Chemistry, vol. 276, no. 16, pp. 12685–12690, 2001. View at Publisher · View at Google Scholar · View at Scopus
  237. G. Wilkening, T. Linke, G. Uhlhorn-Dierks, and K. Sandhoff, “Degradation of membrane-bound ganglioside GM1: stimulation by bis(monoacylglycero)phosphate and the activator proteins SAP-B and GM2-AP,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 35814–35819, 2000. View at Publisher · View at Google Scholar · View at Scopus
  238. S. T. Hepbildikler, R. Sandhoff, M. Kölzer, R. L. Proia, and K. Sandhoff, “Physiological substrates for human lysosomal β-hexosaminidase S,” The Journal of Biological Chemistry, vol. 277, no. 4, pp. 2562–2572, 2002. View at Publisher · View at Google Scholar · View at Scopus
  239. R. Sandhoff, S. T. Hepbildikler, R. Jennemann et al., “Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: determination by nano-electrospray ionization tandem mass spectrometry,” The Journal of Biological Chemistry, vol. 277, no. 23, pp. 20386–20398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  240. M. Abdul-Hammed, B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff, “Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion,” Journal of Lipid Research, vol. 51, no. 7, pp. 1747–1760, 2010. View at Publisher · View at Google Scholar · View at Scopus
  241. H. Bruhn, “A short guided tour through functional and structural features of saposin-like proteins,” Biochemical Journal, vol. 389, no. 2, pp. 249–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  242. E. Mehl and H. Jatzkewitz, “A cerebrosidesulfatase from swine kidney,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 339, no. 1, pp. 260–276, 1964. View at Scopus
  243. A. Vogel, G. Schwarzmann, and K. Sandhoff, “Glycosphingolipid specificity of the human sulfatide activator protein,” European Journal of Biochemistry, vol. 200, no. 2, pp. 591–597, 1991. View at Scopus
  244. G. Fischer and H. Jatzkewitz, “The activator of cerebroside sulphatase. Binding studies with enzyme and substrate demonstrating the detergent function of the activator protein,” Biochimica et Biophysica Acta, vol. 481, no. 2, pp. 561–572, 1977. View at Scopus
  245. E. Conzelmann, M. Lee-Vaupel, and K. Sandhoff, “The physiological role of activator proteins for lysosomal glycolipid degradation,” in Lipid Storage Disorders: Biological and Medical Aspects, R. Salvayre, L. Douste-Blazy, and S. Gatt, Eds., vol. 150, pp. 323–332, Pergamon Press, New York, NY, USA, 1988.
  246. B. Schmid, B. C. Paton, K. Sandhoff, and K. Harzer, “Metabolism of G(M1) ganglioside in cultured skin fibroblasts: anomalies in gangliosidoses, sialidoses, and sphingolipid activator protein (SAP, saposin) 1 and prosaposin deficient disorders,” Human Genetics, vol. 89, no. 5, pp. 513–518, 1992. View at Scopus
  247. V. E. Ahn, K. F. Faull, J. P. Whitelegge, A. L. Fluharty, and G. G. Privé, “Crystal structure of saposin B reveals a dimeric shell for lipid binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 38–43, 2003. View at Publisher · View at Google Scholar · View at Scopus
  248. K. A. Kretz, G. S. Carson, S. Morimoto, Y. Kishimoto, A. L. Fluharty, and J. S. O'Brien, “Characterization of a mutation in a family with saposin B deficiency: a glycosylation site defect,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 7, pp. 2541–2544, 1990. View at Scopus
  249. Y. Sun, D. P. Witte, H. Ran et al., “Neurological deficits and glycosphingolipid accumulation in saposin B deficient mice,” Human Molecular Genetics, vol. 17, no. 15, pp. 2345–2356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  250. E. Conzelmann and K. Sandhoff, “Purification and characterization of an activator protein for the degradation of glycolipids G(M2) and G(A2) by hexosaminidase A,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 360, no. 12, pp. 1837–1849, 1979. View at Scopus
  251. E. Conzelmann and K. Sandhoff, “AB variant of infantile Gm2 gangliosidosis. Deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside Gm2 and glycolipid Ga2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 8, pp. 3979–3983, 1978. View at Scopus
  252. C. S. Wright, S. C. Li, and F. Rastinejad, “Crystal structure of human GM2-activator protein with a novel β-cup topology,” Journal of Molecular Biology, vol. 304, no. 3, pp. 411–422, 2000. View at Publisher · View at Google Scholar · View at Scopus
  253. C. S. Wright, Q. Zhao, and F. Rastinejad, “Structural analysis of lipid complexes of GM2-activator protein,” Journal of Molecular Biology, vol. 331, no. 4, pp. 951–964, 2003. View at Publisher · View at Google Scholar · View at Scopus
  254. M. Wendeler, J. Hoernschemeyer, D. Hoffmann, T. Kolter, G. Schwarzmann, and K. Sandhoff, “Photoaffinity labelling of the Human GM2-activator protein Mechanistic insight into ganglioside GM2 degradation,” European Journal of Biochemistry, vol. 271, no. 3, pp. 614–627, 2004. View at Publisher · View at Google Scholar · View at Scopus
  255. J. D. Mathias, Y. Ran, J. D. Carter, and G. E. Fanucci, “Interactions of the GM2 activator protein with phosphatidylcholine bilayers: a site-directed spin-labeling power saturation study,” Biophysical Journal, vol. 97, no. 5, pp. 1436–1444, 2009. View at Publisher · View at Google Scholar · View at Scopus
  256. Y. Ran and G. E. Fanucci, “A dansyl fluorescence-based assay for monitoring kinetics of lipid extraction and transfer,” Analytical Biochemistry, vol. 382, no. 2, pp. 132–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  257. Y. Ran and G. E. Fanucci, “Ligand extraction properties of the GM2 activator protein and its interactions with lipid vesicles,” Biophysical Journal, vol. 97, no. 1, pp. 257–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  258. A. Giehl, T. Lemm, O. Bartelsen, K. Sandhoff, and A. Blume, “Interaction of the GM2-activator protein with phospholipid-ganglioside bilayer membranes and with monolayers at the air-water interface,” European Journal of Biochemistry, vol. 261, no. 3, pp. 650–658, 1999. View at Publisher · View at Google Scholar · View at Scopus
  259. C. S. Wright, L. Z. Mi, S. Lee, and F. Rastinejad, “Crystal structure analysis of phosphatidylcholine-GM2-activator product complexes: evidence for hydrolase activity,” Biochemistry, vol. 44, no. 41, pp. 13510–13521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  260. B. Rigat, D. Reynaud, N. Smiljanic-Georgijev, and D. Mahuran, “The GM2 activator protein, a novel inhibitor of platelet-activating factor,” Biochemical and Biophysical Research Communications, vol. 258, no. 2, pp. 256–259, 1999. View at Publisher · View at Google Scholar · View at Scopus
  261. B. Rigat, H. Yeger, D. Shehnaz, and D. Mahuran, “GM2 activator protein inhibits platelet activating factor signaling in rats,” Biochemical and Biophysical Research Communications, vol. 385, no. 4, pp. 576–580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  262. C. S. Wright, L. Z. Mi, and F. Rastinejad, “Evidence for lipid packaging in the crystal structure of the GM2-activator complex with platelet activating factor,” Journal of Molecular Biology, vol. 342, no. 2, pp. 585–592, 2004. View at Publisher · View at Google Scholar · View at Scopus
  263. K. Higashi, H. Kubo, H. Watanabe, K. Fujimori, T. Mikami, and H. Kaneko, “Adipokine ganglioside GM2 activator protein stimulates insulin secretion,” FEBS Letters, vol. 585, pp. 2587–2591, 2011.
  264. E. Starostina, A. Xu, H. Lin, and C. W. Pikielny, “A Drosophila protein family implicated in pheromone perception is related to Tay-Sachs GM2-activator protein,” The Journal of Biological Chemistry, vol. 284, no. 1, pp. 585–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  265. A. F. Bruce, M. P. Gares, M. E. Selkirk, and K. Gounaris, “Functional characterisation of a nematode secreted GM2-activator protein,” Molecular and Biochemical Parasitology, vol. 147, no. 2, pp. 224–229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  266. L. Leon, R. V. Tatituri, R. Grenha et al., “Saposins utilize two strategies for lipid transfer and CD1 antigen presentation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 4357–4364, 2012.
  267. T. Kolter, F. Winau, U. E. Schaible, M. Leippe, and K. Sandhoff, “Lipid-binding proteins in membrane digestion, antigen presentation, and antimicrobial defense,” The Journal of Biological Chemistry, vol. 280, no. 50, pp. 41125–41128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  268. Y. O. Suzuki A and E. Nanba, “β-Galactosidase Deficiency (β-Galactosidosis): GM1 gangliosidosis and morquio B disease,” in The Metabolic and Molecular Bases of Inherited Disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, Eds., vol. 3, pp. 3775–3809, McGraw-Hill, 2001.
  269. U. Ohto, K. Usui, T. Ochi, K. Yuki, Y. Satow, and T. Shimizu, “Crystal structure of human beta-galactosidase: structural basis of Gm1 gangliosidosis and morquio B diseases,” The Journal of Biological Chemistry, vol. 287, pp. 1801–1812, 2012.
  270. A. Hinek, M. Rabinovitch, F. Keeley, Y. Okamura-Oho, and J. Callahan, “The 67-kD elastin/laminin-binding protein is related to an enzymatically inactive, alternatively spliced form of β-galactosidase,” Journal of Clinical Investigation, vol. 91, no. 3, pp. 1198–1205, 1993. View at Scopus
  271. A. D'Azzo and E. Bonten, “Molecular mechanisms of pathogenesis in a glycosphingolipid and a glycoprotein storage disease,” Biochemical Society Transactions, vol. 38, no. 6, pp. 1453–1457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  272. K. Sango, S. Yamanaka, A. Hoffmann et al., “Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism,” Nature Genetics, vol. 11, no. 2, pp. 170–176, 1995. View at Scopus
  273. H. J. Kytzia and K. Sandhoff, “Evidence for two different active sites on human β-hexosaminidase A. Interaction of G(M2) activator protein with β-hexosaminidase A,” The Journal of Biological Chemistry, vol. 260, no. 12, pp. 7568–7572, 1985. View at Scopus
  274. T. Maier, N. Strater, C. G. Schuette, R. Klingenstein, K. Sandhoff, and W. Saenger, “The X-ray crystal structure of human β-hexosaminidase B provides new insights into Sandhoff disease,” Journal of Molecular Biology, vol. 328, no. 3, pp. 669–681, 2003. View at Publisher · View at Google Scholar · View at Scopus
  275. B. L. Mark, D. J. Mahuran, M. M. Cherney, D. Zhao, S. Knapp, and M. N. G. James, “Crystal Structure of Human β-Hexosaminidase B: understanding the Molecular Basis of Sandhoff and Tay-Sachs Disease,” Journal of Molecular Biology, vol. 327, no. 5, pp. 1093–1109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  276. M. L. Schultz, L. Tecedor, M. Chang, and B. L. Davidson, “Clarifying lysosomal storage diseases,” Trends in Neurosciences, vol. 34, no. 8, pp. 401–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  277. Y. H. Xu, S. Barnes, Y. Sun, and G. A. Grabowski, “Multi-system disorders of glycosphingolipid and ganglioside metabolism,” Journal of Lipid Research, vol. 51, no. 7, pp. 1643–1675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  278. A. Ballabio and V. Gieselmann, “Lysosomal disorders: from storage to cellular damage,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 684–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  279. O. Staretz-Chacham, T. C. Lang, M. E. Lamarca, D. Krasnewich, and E. Sidransky, “Lysosomal storage disorders in the newborn,” Pediatrics, vol. 123, no. 4, pp. 1191–1207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  280. S. U. Walkley and M. T. Vanier, “Secondary lipid accumulation in lysosomal disease,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 726–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  281. T. Kolter and K. Sandhoff, “Sphingolipid metabolism diseases,” Biochimica et Biophysica Acta, vol. 1758, no. 12, pp. 2057–2079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  282. S. U. Walkley, “Pathogenic cascades in lysosomal disease—why so complex?” Journal of Inherited Metabolic Disease, vol. 32, no. 2, pp. 181–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  283. T. M. Cox and M. B. Cachon-Gonzalez, “The cellular pathology of lysosomal diseases,” The Journal of Pathology, vol. 226, pp. 241–254, 2012.
  284. F. M. Platt and R. H. Lachmann, “Treating lysosomal storage disorders: current practice and future prospects,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 737–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  285. P. Leinekugel, S. Michel, E. Conzelmann, and K. Sandhoff, “Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease,” Human Genetics, vol. 88, no. 5, pp. 513–523, 1992. View at Scopus
  286. E. Conzelmann and K. Sandhoff, “Partial enzyme deficiencies: residual activities and the development of neurological disorders,” Developmental Neuroscience, vol. 6, no. 1, pp. 58–71, 1983. View at Scopus
  287. M. Zervas, K. Dobrenis, and S. U. Walkley, “Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 1, pp. 49–64, 2001. View at Scopus
  288. M. Zervas, K. L. Somers, M. A. Thrall, and S. U. Walkley, “Critical role for glycosphingolipids in Niemann-Pick disease type C,” Current Biology, vol. 11, no. 16, pp. 1283–1287, 2001. View at Publisher · View at Google Scholar · View at Scopus
  289. N. H. Pipalia, C. C. Cosner, A. Huang et al., “Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5620–5625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  290. D. Campos and M. Monaga, “Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms,” Metabolic Brain Disease, vol. 27, pp. 121–129, 2012.
  291. M. Aridor and L. A. Hannan, “Tarffic jam: a compendium of human diseases that affect intracellular transport processes,” Traffic, vol. 1, no. 11, pp. 836–851, 2000. View at Scopus
  292. M. Aridor and L. A. Hannan, “Traffic Jams II: an update of diseases of intracellular transport,” Traffic, vol. 3, no. 11, pp. 781–790, 2002. View at Publisher · View at Google Scholar · View at Scopus
  293. M. Jeyakumar, I. Williams, D. A. Smith, T. M. Cox, and F. M. Platt, “Critical role of iron in the pathogenesis of the murine gangliosidoses,” Neurobiology of Disease, vol. 34, no. 3, pp. 406–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  294. C. Settembre, A. Fraldi, D. C. Rubinsztein, and A. Ballabio, “Lysosomal storage diseases as disorders of autophagy,” Autophagy, vol. 4, no. 1, pp. 113–114, 2008. View at Scopus
  295. N. Brunetti-Pierri and F. Scaglia, “GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects,” Molecular Genetics and Metabolism, vol. 94, no. 4, pp. 391–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  296. J. Caffey, “Gargoylism (Hunter-Hurler disease, dysostosis multiplex, lipochondrodystrophy); prenatal and neonatal bone lesions and their early postnatal evolution,” Bulletin of the Hospital for Joint Diseases, vol. 12, no. 2, pp. 38–66, 1951. View at Scopus
  297. B. H. Landing, F. N. Silverman, J. M. Craig, M. D. Jacoby, M. E. Lahey, and D. L. Chadwick, “Familial neurovisceral lipidosis. An analysis of eight cases of a syndrome previously reported as “hurler-variant,” “pseudo-hurler,” and “tay-sachs disease with visceral involvement”,” American Journal of Diseases of Children, vol. 108, pp. 503–522, 1964. View at Scopus
  298. M. Jeyakumar, R. Thomas, E. Elliot-Smith et al., “Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis,” Brain, vol. 126, no. 4, pp. 974–987, 2003. View at Publisher · View at Google Scholar · View at Scopus
  299. G. Wu, Z. H. Lu, J. Wang et al., “Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1,” Journal of Neuroscience, vol. 25, no. 47, pp. 11014–11022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  300. A. Tessitore, M. D. P. Martin, R. Sano et al., “GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis,” Molecular Cell, vol. 15, no. 5, pp. 753–766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  301. T. Okumiya, H. Sakuraba, R. Kase, and T. Sugiura, “Imbalanced substrate specificity of mutant β-galactosidase in patients with Morquio B disease,” Molecular Genetics and Metabolism, vol. 78, no. 1, pp. 51–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  302. Y. Suzuki, “Chemical chaperone therapy for GM1-gangliosidosis,” Cellular and Molecular Life Sciences, vol. 65, no. 3, pp. 351–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  303. A. Caciotti, M. A. Donati, A. d'Azzo et al., “The potential action of galactose as a "chemical chaperone": increase of beta galactosidase activity in fibroblasts from an adult GM1-gangliosidosis patient,” European Journal of Paediatric Neurology, vol. 13, no. 2, pp. 160–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  304. B. A. Rigat, M. B. Tropak, J. Buttner et al., “Evaluation of N-nonyl-deoxygalactonojirimycin as a pharmacological chaperone for human GM1 gangliosidosis leads to identification of a feline model suitable for testing enzyme enhancement therapy,” Molecular Genetics and Metabolism, vol. 107, no. 1-2, pp. 203–212, 2012. View at Publisher · View at Google Scholar
  305. R. A. Gravel, M. M. Kaback, R. L. Proia, K. Sandhoff, and K. Suzuki, “The GM2 gangliosidoses,” in The Metabolic and Molecular Bases of Inherited Disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, Eds., vol. 3, pp. 3827–3877, McGraw-Hill, New York, NY, USA, 2001.
  306. H. E. Saqr, D. K. Pearl, and A. J. Yates, “A review and predictive models of ganglioside uptake by biological membranes,” Journal of Neurochemistry, vol. 61, no. 2, pp. 395–411, 1993. View at Scopus
  307. G. Schwarzmann, P. Hoffmann-Bleihauer, J. Schubert, K. Sandhoff, and D. Marsh, “Incorporation of ganglioside analogues into fibroblast cell membranes. A spin-label study,” Biochemistry, vol. 22, no. 21, pp. 5041–5048, 1983. View at Scopus
  308. C. Eggeling, C. Ringemann, R. Medda et al., “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature, vol. 457, no. 7233, pp. 1159–1162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  309. H. J. Kytzia, U. Hinrichs, I. Maire, K. Suzuki, and K. Sandhoff, “Variant of GM2-gangliosidosis with hexosaminidase A having a severely changed substrate specificity,” The EMBO Journal, vol. 2, no. 7, pp. 1201–1205, 1983. View at Scopus
  310. K. Suzuki and M. T. Vanier, “Biochemical and molecular aspects of late-onset GM2-gangliosidosis: B1 variant as a prototype,” Developmental Neuroscience, vol. 13, no. 4-5, pp. 288–294, 1991. View at Scopus
  311. Y. Ben-Yoseph, J. E. Reid, B. Shapiro, and H. L. Nadler, “Diagnosis and carrier detection of Tay-Sachs disease: direct determination of hexosaminidase A using 4-methylumbelliferyl derivatives of β-N-acetylglucosamine-6-sulfate and β-N-acetylgalactosamine-6-sulfate,” American Journal of Human Genetics, vol. 37, no. 4, pp. 733–740, 1985. View at Scopus
  312. W. Fuchs, R. Navon, M. M. Kaback, and H. Kresse, “Tay-Sachs disease: one-step assay of β-N-acetylhexosaminidase in serum with a sulphated chromogenic substrate,” Clinica Chimica Acta, vol. 133, no. 3, pp. 253–261, 1983. View at Publisher · View at Google Scholar · View at Scopus
  313. Y. Liu, A. Hoffmann, A. Grinberg et al., “Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 15, pp. 8138–8143, 1997. View at Scopus
  314. D. P. Purpura and K. Suzuki, “Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease,” Brain Research, vol. 116, no. 1, pp. 1–21, 1976. View at Publisher · View at Google Scholar · View at Scopus
  315. S. Neuenhofer, E. Conzelmann, and G. Schwarzmann, “Occurrence of lysoganglioside lyso-G(M2) (II3-neu5Ac-gangliotriaosylsphingosine) in G(M2) gangliodosis brain,” Biological Chemistry Hoppe-Seyler, vol. 367, no. 3, pp. 241–244, 1986. View at Scopus
  316. T. Kobayashi, I. Goto, S. Okada, T. Orii, K. Ohno, and T. Nakano, “Accumulation of lysosphingolipids in tissues from patients with GM1 and GM2 gangliosidoses,” Journal of Neurochemistry, vol. 59, no. 4, pp. 1452–1458, 1992. View at Scopus
  317. T. Kodama, T. Togawa, T. Tsukimura et al., “Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease,” PLoS One, vol. 6, Article ID e29074, 2011.
  318. T. Kolter, “A view on sphingolipids and disease,” Chemistry and Physics of Lipids, vol. 164, no. 6, pp. 590–606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  319. Y. Liu, R. Wada, H. Kawai et al., “A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder,” Journal of Clinical Investigation, vol. 103, no. 4, pp. 497–505, 1999. View at Scopus
  320. F. Norflus, C. J. Tifft, M. P. McDonald et al., “Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice,” Journal of Clinical Investigation, vol. 101, no. 9, pp. 1881–1888, 1998. View at Scopus
  321. D. Tsuji, H. Akeboshi, K. Matsuoka et al., “Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis,” Annals of Neurology, vol. 69, no. 4, pp. 691–701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  322. M. Jeyakumar, J. P. Lee, N. R. Sibson et al., “Neural stem cell transplantation benefits a monogenic neurometabolic disorder during the symptomatic phase of disease,” Stem Cells, vol. 27, no. 9, pp. 2362–2370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  323. M. Masciullo, M. Santoro, A. Modoni et al., “Substrate reduction therapy with miglustat in chronic GM2 gangliosidosis type Sandhoff: results of a 3-year follow-up,” Journal of Inherited Metabolic Disease. In press.
  324. F. M. Platt and M. Jeyakumar, “Substrate reduction therapy,” Acta Paediatrica, vol. 97, no. 457, pp. 88–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  325. J. T. R. Clarke, D. J. Mahuran, S. Sathe et al., “An open-label Phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay-Sachs or Sandhoff variants),” Molecular Genetics and Metabolism, vol. 102, no. 1, pp. 6–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  326. K. S. Bateman, M. M. Cherney, D. J. Mahuran, M. Tropak, and M. N. G. James, “Crystal structure of β-hexosaminidase B in complex with pyrimethamine, a potential pharmacological chaperone,” Journal of Medicinal Chemistry, vol. 54, no. 5, pp. 1421–1429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  327. L. Batista, F. Miller, C. Clave et al., “Induced secretion of β-hexosaminidase by human brain endothelial cells: a novel approach in Sandhoff disease?” Neurobiology of Disease, vol. 37, no. 3, pp. 656–660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  328. M. Jeyakumar, D. A. Smith, I. M. Williams et al., “NSAIDs increase survival in the Sandhoff disease mouse: synergy with N-butyldeoxynojirimycin,” Annals of Neurology, vol. 56, no. 5, pp. 642–649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  329. K. Yanagisawa, “Pathological significance of ganglioside clusters in Alzheimer's disease,” Journal of Neurochemistry, vol. 116, no. 5, pp. 806–812, 2011. View at Publisher · View at Google Scholar · View at Scopus
  330. R. K. Yu, Y. T. Tsai, and T. Ariga, “Functional roles of gangliosides in neurodevelopment: an overview of recent advances,” Neurochemical Research, vol. 37, pp. 1230–1244, 2012.
  331. A. Prinetti, S. Prioni, N. Loberto et al., “Aberrant glycosphingolipid expression and membrane organization in tumor cells: consequences on tumor-host interactions,” Advances in Experimental Medicine and Biology, vol. 705, pp. 643–667, 2011.
  332. D. F. Alonso, L. E. Fernandez, M. R. Gabri et al., “NGcGM3 ganglioside: a privileged target for cancer vaccines,” Clinical and Developmental Immunology, vol. 2010, Article ID 814397, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  333. J. Heimburg-Molinaro, M. Lum, G. Vijay, M. Jain, A. Almogren, and K. Rittenhouse-Olson, “Cancer vaccines and carbohydrate epitopes,” Vaccine, vol. 29, pp. 8802–8826, 2011.
  334. L. G. Durrant, P. Noble, and I. Spendlove, “Immunology in the clinic review series, focus on cancer: glycolipids as targets for tumour immunotherapy,” Clinical & Experimental Immunology, vol. 167, pp. 206–215, 2012.
  335. A. Uncini, “A common mechanism and a new categorization for anti-ganglioside antibody-mediated neuropathies,” Experimental Neurology, vol. 235, pp. 513–516, 2012.
  336. J. S. Schneider, “The therapeutic role of gangliosides in neurological disorders,” CNS Drugs, vol. 1, pp. 213–222, 1994.
  337. A. C. Cuello, “Gangliosides, NGF, brain aging and disease: a mini-review with personal reflections,” Neurochemical Research, vol. 37, pp. 1256–1260, 2012.
  338. L. Svennerholm, G. Bråne, I. Karlsson, A. Lekman, I. Ramström, and C. Wikkelsö, “Alzheimer disease—effect of continuous intracerebroventricular treatment with GM1 ganglioside and a systematic activation programme,” Dementia and Geriatric Cognitive Disorders, vol. 14, no. 3, pp. 128–136, 2002. View at Scopus
  339. J. I. Inokuchi, “Inhibition of ganglioside biosynthesis as a novel therapeutic approach in insulin resistance,” Handbook of Experimental Pharmacology, vol. 203, pp. 165–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  340. R. J. Thomas, “Receptor mimicry as novel therapeutic treatment for biothreat agents,” Bioengineered Bugs, vol. 1, no. 1, pp. 17–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  341. A. Bachis and I. Mocchetti, “Semisynthetic sphingoglycolipid LIGA20 is neuroprotective against human immunodeficiency virus-gp120-mediated apoptosis,” Journal of Neuroscience Research, vol. 83, no. 5, pp. 890–896, 2006. View at Publisher · View at Google Scholar · View at Scopus
  342. C. B. Zeller and R. B. Marchase, “Gangliosides as modulators of cell function,” American Journal of Physiology, vol. 262, no. 6, pp. C1341–C1355, 1992. View at Scopus
  343. N. V. Prokazova, N. N. Samovilova, E. V. Gracheva, and N. K. Golovanova, “Ganglioside GM3 and its biological functions,” Biochemistry, vol. 74, no. 3, pp. 235–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  344. R. W. Ledeen and G. Wu, “In search of a solution to the sphinx-like riddle of GM1,” Neurochemical Research, vol. 35, no. 12, pp. 1867–1874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  345. A. Regina Todeschini and S. I. Hakomori, “Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains,” Biochimica et Biophysica Acta, vol. 1780, no. 3, pp. 421–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  346. S. I. Hakomori, “Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility,” FEBS Letters, vol. 584, no. 9, pp. 1901–1906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  347. P. H. Lopez and R. L. Schnaar, “Gangliosides in cell recognition and membrane protein regulation,” Current Opinion in Structural Biology, vol. 19, no. 5, pp. 549–557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  348. R. L. Schnaar, “Glycolipid-mediated cell-cell recognition in inflammation and nerve regeneration,” Archives of Biochemistry and Biophysics, vol. 426, no. 2, pp. 163–172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  349. R. W. Ledeen, G. S. Wu, S. Andre et al., “Beyond glycoproteins as galectin counterreceptors: tumor-effector T cell growth control via ganglioside GM1,” Annals of the New York Academy of Sciences, vol. 1253, pp. 206–221, 2012.
  350. J. Kopitz, C. Von Reitzenstein, M. Burchert, M. Cantz, and H. J. Gabius, “Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture,” The Journal of Biological Chemistry, vol. 273, no. 18, pp. 11205–11211, 1998. View at Publisher · View at Google Scholar · View at Scopus
  351. S. Hakomori, “Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization,” Glycoconjugate Journal, vol. 21, no. 3-4, pp. 125–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  352. S. Hakomori, “Carbohydrate-Carbohydrate interaction in basic cell biology,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 787–803, Elsevier, Oxford, UK, 2007.
  353. I. Bucior and M. M. Burger, “Carbohydrate-carbohydrate interactions in cell recognition,” Current Opinion in Structural Biology, vol. 14, no. 5, pp. 631–637, 2004. View at Publisher · View at Google Scholar · View at Scopus
  354. N. Kojima and S. Hakomori, “Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (G(M3) as a basis for specific cellular recognition between lymphoma and melanoma cells,” The Journal of Biological Chemistry, vol. 264, no. 34, pp. 20159–20162, 1989. View at Scopus
  355. R. L. Schnaar, “Brain gangliosides in axon-myelin stability and axon regeneration,” FEBS Letters, vol. 584, no. 9, pp. 1741–1747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  356. L. Cantu, E. Del Favero, S. Sonnino, and A. Prinetti, “Gangliosides and the multiscale modulation of membrane structure,” Chemistry and Physics of Lipids, vol. 164, pp. 796–810, 2011.
  357. J. Inokuchi and K. Kabayama, “Receptor modifications in glycobiology,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 733–743, Elsevier, Oxford, UK, 2007.
  358. R. L. Schnaar, “Neural functions of glycolipids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 4, pp. 323–337, Elsevier, Oxford, UK, 2007.
  359. C. L. Schengrund, “Lipid rafts: keys to neurodegeneration,” Brain Research Bulletin, vol. 82, no. 1-2, pp. 7–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  360. U. Coskun, M. Grzybek, D. Drechsel, and K. Simons, “Regulation of human EGF receptor by lipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 9044–9048, 2011. View at Publisher · View at Google Scholar · View at Scopus
  361. S. Sonnino, L. Mauri, V. Chigorno, and A. Prinetti, “Gangliosides as components of lipid membrane domains,” Glycobiology, vol. 17, no. 1, pp. 1r–13r, 2007. View at Publisher · View at Google Scholar · View at Scopus
  362. K. Simons and J. L. Sampaio, “Membrane organization and lipid rafts,” Cold Spring Harbor Perspectives in Biology, vol. 3, Article ID a004697, 2011.
  363. K. Simons and M. J. Gerl, “Revitalizing membrane rafts: new tools and insights,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 688–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  364. D. Lingwood and K. Simons, “Lipid rafts as a membrane-organizing principle,” Science, vol. 327, no. 5961, pp. 46–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  365. J. Lippincott-Schwartz and R. D. Phair, “Lipids and cholesterol as regulators of traffic in the endomembrane system,” Annual Review of Biophysics, vol. 39, no. 1, pp. 559–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  366. H. D. Gallala and K. Sandhoff, “Principles of microdomain formation in biological membranes—are there lipid liquid ordered domains in living cellular membranes?” Trends in Glycoscience and Glycotechnology, vol. 20, no. 116, pp. 277–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  367. J. Van Rheenen, E. M. Achame, H. Janssen, J. Calafat, and K. Jalink, “PIP2 signaling in lipid domains: a critical re-evaluation,” The EMBO Journal, vol. 24, no. 9, pp. 1664–1673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  368. L. J. Pike, “Rafts defined: a report on the keystone symposium on lipid rafts and cell function,” Journal of Lipid Research, vol. 47, no. 7, pp. 1597–1598, 2006. View at Publisher · View at Google Scholar · View at Scopus
  369. D. Lichtenberg, F. M. Goñi, and H. Heerklotz, “Detergent-resistant membranes should not be identified with membrane rafts,” Trends in Biochemical Sciences, vol. 30, no. 8, pp. 430–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  370. H. Heerklotz, “Triton promotes domain formation in lipid raft mixtures,” Biophysical Journal, vol. 83, no. 5, pp. 2693–2701, 2002. View at Scopus
  371. M. Heffer-Lauc, G. Lauc, L. Nimrichter, S. E. Fromholt, and R. L. Schnaar, “Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation,” Biochimica et Biophysica Acta, vol. 1686, no. 3, pp. 200–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  372. M. Heffer-Lauc, G. Lauc, L. Nimrichter, S. E. Fromholt, and R. L. Schnaar, “Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation,” Biochimica et Biophysica Acta, vol. 1686, no. 3, pp. 200–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  373. M. Brameshuber, J. Weghuber, V. Ruprecht et al., “Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane,” The Journal of Biological Chemistry, vol. 285, no. 53, pp. 41765–41771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  374. T. Janas, “Membrane oligo- and polysialic acids,” Biochimica et Biophysica Acta, vol. 1808, pp. 2923–2932, 2011.
  375. B. C. Salazar, S. Castaño, J. C. Sãnchez, M. Romero, and E. Recio-Pinto, “Ganglioside GD1a increases the excitability of voltage-dependent sodium channels,” Brain Research, vol. 1021, no. 2, pp. 151–158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  376. A. Varki and P. Gagneux, “Multifarious roles of sialic acids in immunity,” Annals of the New York Academy of Sciences, vol. 1253, pp. 16–36, 2012.
  377. K. Hanada, “Sphingolipids in infectious diseases,” Japanese Journal of Infectious Diseases, vol. 58, no. 3, pp. 131–148, 2005. View at Scopus
  378. U. Neu, J. Bauer, and T. Stehle, “Viruses and sialic acids: rules of engagement,” Current Opinion in Structural Biology, vol. 21, pp. 610–618, 2011.
  379. J. Sánchez and J. Holmgren, “Cholera toxin—a foe & a friend,” Indian Journal of Medical Research, vol. 133, no. 2, pp. 153–163, 2011. View at Scopus
  380. N. Roche, J. Ångström, M. Hurtig, T. Larsson, T. Borén, and S. Teneberg, “Helicobacter pylori and complex gangliosides,” Infection and Immunity, vol. 72, no. 3, pp. 1519–1529, 2004. View at Publisher · View at Google Scholar · View at Scopus
  381. A. Varki, “Sialic acids in human health and disease,” Trends in Molecular Medicine, vol. 14, no. 8, pp. 351–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  382. P. R. Crocker, J. C. Paulson, and A. Varki, “Siglecs and their roles in the immune system,” Nature Reviews Immunology, vol. 7, no. 4, pp. 255–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  383. J. C. Paulson, M. S. Macauley, and N. Kawasaki, “Siglecs as sensors of self in innate and adaptive immune responses,” Annals of the New York Academy of Sciences, vol. 1253, pp. 37–48, 2012.
  384. G. Stafford, S. Roy, K. Honma, and A. Sharma, “Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast!,” Molecular Oral Microbiology, vol. 27, pp. 11–22, 2012.
  385. K. D. Erickson, R. L. Garcea, and B. Tsai, “Ganglioside GT1b is a putative host cell receptor for the Merkel cell polyomavirus,” Journal of Virology, vol. 83, no. 19, pp. 10275–10279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  386. T. Haselhorst, F. E. Fleming, J. C. Dyason et al., “Sialic acid dependence in rotavirus host cell invasion,” Nature Chemical Biology, vol. 5, no. 2, pp. 91–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  387. E. C. Nilsson, R. J. Storm, J. Bauer et al., “The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis,” Nature Medicine, vol. 17, no. 1, pp. 105–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  388. K. Furukawa, O. Tajima, T. Okuda, N. Tokuda, and K. Furukawa, “Knockout mice and glycolipids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 4, pp. 149–157, Elsevier, Oxford, UK, 2007.
  389. G. Wu, X. Xie, Z. H. Lu, and R. W. Ledeen, “Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 1, pp. 307–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  390. K. Furukawa, Y. Ohmi, Y. Ohkawa et al., “Regulatory mechanisms of nervous systems with glycosphingolipids,” Neurochemical Research, vol. 36, pp. 1578–1586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  391. F. Sabourdy, B. Kedjouar, S. C. Sorli et al., “Functions of sphingolipid metabolism in mammals - Lessons from genetic defects,” Biochimica et Biophysica Acta, vol. 1781, no. 4, pp. 145–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  392. R. P. Rao and J. K. Acharya, “Sphingolipids and membrane biology as determined from genetic models,” Prostaglandins and Other Lipid Mediators, vol. 85, no. 1-2, pp. 1–16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  393. S. Matuoka, M. Akiyama, H. Yamada, K. Tsuchihashi, and S. Gasa, “Phase behavior in multilamellar vesicles of DPPC containing ganglioside GM3 with a C18:1 sphingoid base and a 24:0 acyl chain (GM3(18,24)) observed by X-ray diffraction,” Chemistry and Physics of Lipids, vol. 123, no. 1, pp. 19–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  394. T. Wennekes, R. J. B. H. N. Van Den Berg, R. G. Boot, G. A. Van Der Marel, H. S. Overkleeft, and J. M. F. G. Aerts, “Glycosphingolipids—nature, function, and pharmacological modulation,” Angewandte Chemie, vol. 48, no. 47, pp. 8848–8869, 2009. View at Publisher · View at Google Scholar · View at Scopus
  395. H. Shibuya, K. Hamamura, H. Hotta et al., “Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD32012,” Cancer Science, vol. 103, no. 9, pp. 1656–1664. View at Publisher · View at Google Scholar
  396. Y. Dong, K. Ikeda, K. Hamamura et al., “GM1/GD1/GA1 synthase expression results in the reduced cancer phenotypes with modulation of composition and raft-localization of gangliosides in a melanoma cell line,” Cancer Science, vol. 101, no. 9, pp. 2039–2047, 2010. View at Publisher · View at Google Scholar · View at Scopus
  397. J. I. Inokuchi, “Chapter 22 neurotrophic and neuroprotective actions of an enhancer of ganglioside biosynthesis,” International Review of Neurobiology, vol. 85, pp. 319–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  398. G. Wu, Z. H. Lu, X. Xie, B. Li, and R. W. Ledeen, “Mutant NG108-15 cells (NG-CR72) deficient in GM1 synthase respond aberrantly to axonogenic stimuli and are vulnerable to calcium-induced apoptosis: they are rescued with LIGA-20,” Journal of Neurochemistry, vol. 76, no. 3, pp. 690–702, 2001. View at Publisher · View at Google Scholar · View at Scopus
  399. T. Kolter, T. M. Magin, and K. Sandhoff, “Biomolecule function: no reliable prediction from cell culture,” Traffic, vol. 1, no. 10, pp. 803–804, 2000. View at Scopus
  400. M. R. Bond, H. Zhang, J. Kim et al., “Metabolism of diazirine-modified N-acetylmannosamine analogues to photo-cross-linking sialosides,” Bioconjugate Chemistry, vol. 22, pp. 1811–1823, 2011.
  401. H. Kayser, R. Zeitler, C. Kannicht, D. Grunow, R. Nuck, and W. Reutter, “Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors,” The Journal of Biological Chemistry, vol. 267, no. 24, pp. 16934–16938, 1992. View at Scopus
  402. P. Palestini, M. Pitto, G. Tedeschi et al., “Tubulin anchoring to glycolipid-enriched, detergent-resistant domains of the neuronal plasma membrane,” The Journal of Biological Chemistry, vol. 275, no. 14, pp. 9978–9985, 2000. View at Publisher · View at Google Scholar · View at Scopus
  403. M. Panasiewicz, J. Mieczkowski, H. Domek, and T. Pacuszka, “HPLC-based procedure for the preparation of carbene-generating photoreactive GM3 and GM1 ganglioside derivatives radioiodinated to high specific radioactivity with chloramine T as an oxidant,” Analytical Biochemistry, vol. 340, no. 2, pp. 373–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  404. P. Zimmermann, R. Bommer, T. Bar, and R. R. Schmidt, “Azidosphingosine glycosylation in glycosphingolipid synthesis,” Journal of Carbohydrate Chemistry, vol. 7, no. 2, pp. 435–452, 1988. View at Scopus
  405. R. R. Schmid and X. Zhu, “Glycosyl trichloroacetimidates,” in Glycoscience, B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., pp. 452–542, Springer, Berlin, Germany, 2008.
  406. H. Ando and M. Kiso, “Selective α-Sialylation,” in Glycoscience, B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., pp. 1315–1359, Springer, Berlin, Germany, 2008.
  407. H. A. Chokhawala and X. Chen, “Enzymatic approaches to O-glycoside introduction: glycosyltransferases,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 1, pp. 415–451, Elsevier, Oxford, UK, 2007.
  408. O. Blixt and N. Razi, “Enzymatic glycosylation by transferases,” in Glycoscience, B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., pp. 1362–1385, Springer, Berlin, Germany, 2008.
  409. J. R. Rich, A. M. Cunningham, M. Gilbert, and S. G. Withers, “Glycosphingolipid synthesis employing a combination of recombinant glycosyltransferases and an endoglycoceramidase glycosynthase,” Chemical Communications, vol. 47, pp. 10806–10808, 2011.
  410. S. Fort, L. Birikaki, M. P. Dubois, T. Antoine, E. Samain, and H. Driguez, “Biosynthesis of conjugatable saccharidic moieties of GM2 and GM3 gangliosides by engineered E. coli,” Chemical Communications, no. 20, pp. 2558–2560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  411. M. Gilbert, M. F. Karwaski, S. Bernatchez et al., “The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide,” The Journal of Biological Chemistry, vol. 277, no. 1, pp. 327–337, 2002. View at Publisher · View at Google Scholar · View at Scopus
  412. N. Fierfort and E. Samain, “Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides,” Journal of Biotechnology, vol. 134, no. 3-4, pp. 261–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  413. T. Antoine, A. Heyraud, C. Bosso, and E. Samain, “Highly efficient biosynthesis of the oligosaccharide moiety of the GD3 ganglioside by using metabolically engineered Escherichia coli,” Angewandte Chemie, vol. 44, no. 9, pp. 1350–1352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  414. B. Priem, M. Gilbert, W. W. Wakarchuk, A. Heyraud, and E. Samain, “A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria,” Glycobiology, vol. 12, no. 4, pp. 235–240, 2002. View at Scopus
  415. T. Antoine, B. Priem, A. Heyraud et al., “Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli,” ChemBioChem, vol. 4, no. 5, pp. 406–412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  416. Y. Shimura, J. Suzuki, M. Muraoka, M. C. Kasuya, K. Matsuoka, and K. Hatanaka, “Large scale biosynthesis of ganglioside analogues by RERF-LC-AI cells cultured in HYPERFlask,” Preparative Biochemistry and Biotechnology, vol. 42, pp. 378–392, 2012.
  417. R. Ghidoni, G. Sala, and A. Giuliani, “Use of sphingolipid analogs: benefits and risks,” Biochimica et Biophysica Acta, vol. 1439, no. 1, pp. 17–39, 1999. View at Publisher · View at Google Scholar · View at Scopus
  418. G. Schwarzmann, “A simple and novel method for tritium labeling of gangliosides and other sphingolipids,” Biochimica et Biophysica Acta, vol. 529, no. 1, pp. 106–114, 1978. View at Scopus
  419. S. Sonnino, M. Nicolini, and V. Chigorno, “Preparation of radiolabeled gangliosides,” Glycobiology, vol. 6, no. 5, pp. 479–487, 1996. View at Scopus
  420. G. Schwarzmann, “Uptake and metabolism of exogenous glycosphingolipids by cultured cells,” Seminars in Cell and Developmental Biology, vol. 12, no. 2, pp. 163–171, 2001. View at Publisher · View at Google Scholar · View at Scopus
  421. S. I. Hakomori, “Structure and function of glycosphingolipids and sphingolipids: recollections and future trends,” Biochimica et Biophysica Acta, vol. 1780, no. 3, pp. 325–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  422. S. I. Hakomori, “Release of carbohydrates from sphingoglycolipid by osmium-catalyzed periodate oxidation followed by treatment with mild alkali,” Journal of Lipid Research, vol. 7, no. 6, pp. 789–792, 1966. View at Scopus
  423. H. Wiegandt and H. W. Bücking, “Carbohydrate components of extraneuronal gangliosides from bovine and human spleen, and bovine kidney,” European Journal of Biochemistry, vol. 15, no. 2, pp. 287–292, 1970. View at Scopus
  424. N. Nagahori, M. Abe, and S. I. Nishimura, “Structural and functional glycosphingolipidomics by glycoblotting with an aminooxy-functionalized gold nanoparticle,” Biochemistry, vol. 48, no. 3, pp. 583–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  425. S. C. Li, R. Degasperi, J. E. Muldrey, and Y. T. Li, “A unique glycosphingolipid-splitting enzyme (ceramide-glycanase from leech) cleaves the linkage between the oligosaccharide and the ceramide,” Biochemical and Biophysical Research Communications, vol. 141, no. 1, pp. 346–352, 1986. View at Scopus
  426. Y. T. Li, C. W. Chou, S. C. Li, U. Kobayashi, Y. H. Ishibashi, and M. Ito, “Preparation of homogenous oligosaccharide chains from glycosphingolipids,” Glycoconjugate Journal, vol. 26, no. 8, pp. 929–933, 2009. View at Publisher · View at Google Scholar · View at Scopus
  427. S. Neuenhofer, G. Schwarzmann, H. Egge, and K. Sandhoff, “Synthesis of lysogangliosides,” Biochemistry, vol. 24, no. 2, pp. 525–532, 1985. View at Scopus
  428. G. Schwarzmann and K. Sandhoff, “Lysogangliosides: synthesis and use in preparing labeled gangliosides,” Methods in Enzymology, vol. 138, pp. 319–341, 1987. View at Scopus
  429. T. Ando, S. C. Li, M. Ito, and Y. T. Li, “Facile method for the preparation of lyso-GM1 and lyso-GM2,” Journal of Chromatography A, vol. 1078, no. 1-2, pp. 193–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  430. E. Arigi, O. Blixt, K. Buschard, H. Clausen, and S. B. Levery, “Design of a covalently bonded glycosphingolipid microarray,” Glycoconjugate Journal, vol. 29, pp. 1–12, 2012.
  431. Y. Tagawa, W. Laroy, L. Nimrichter et al., “Anti-ganglioside antibodies bind with enhanced affinity to gangliosides containing very long chain fatty acids,” Neurochemical Research, vol. 27, no. 7-8, pp. 847–855, 2002. View at Publisher · View at Google Scholar · View at Scopus
  432. F. Knoll, T. Kolter, and K. Sandhoff, “Sphingolipid photoaffinity labels,” Methods in Enzymology, vol. 311, pp. 568–600, 1999. View at Publisher · View at Google Scholar · View at Scopus
  433. B. Maggio, J. Albert, and R. K. Yu, “Thermodynamic-geometric correlations for the morphology of self-assembled structures of glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine,” Biochimica et Biophysica Acta, vol. 945, no. 2, pp. 145–160, 1988. View at Scopus
  434. S. Sonnino, L. Cantù, M. Corti, D. Acquotti, and B. Venerando, “Aggregative properties of gangliosides in solution,” Chemistry and Physics of Lipids, vol. 71, no. 1, pp. 21–45, 1994. View at Publisher · View at Google Scholar · View at Scopus
  435. A. Prinetti, L. Mauri, V. Chigorno, and S. Sonnino, “Lipid membrane domains in glycobiology,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 697–730, Elsevier, Oxford, UK, 2007.
  436. B. Ulrich-Bott and H. Wiegandt, “Micellar properties of glycosphingolipids in aqueous media,” Journal of Lipid Research, vol. 25, no. 11, pp. 1233–1245, 1984. View at Scopus
  437. G. Lauc and M. Heffer-Lauc, “Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins,” Biochimica et Biophysica Acta, vol. 1760, no. 4, pp. 584–602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  438. R. Callies, G. Schwarzmann, and K. Radsak, “Characterization of the cellular binding of exogenous gangliosides,” European Journal of Biochemistry, vol. 80, no. 2, pp. 425–432, 1977. View at Scopus
  439. J. A. M. Rasmussen and A. Hermetter, “Chemical synthesis of fluorescent glycero- and sphingolipids,” Progress in Lipid Research, vol. 47, no. 6, pp. 436–460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  440. R. Olshefski and S. Ladisch, “Synthesis, shedding, and intercellular transfer of human medulloblastoma gangliosides: abrogation by a new inhibitor of glucosylceramide synthase,” Journal of Neurochemistry, vol. 70, no. 2, pp. 467–472, 1998. View at Scopus
  441. S. Ladisch, B. Gillard, C. Wong, and L. Ulsh, “Shedding and immunoregulatory activity of YAC-1 lymphoma cell gangliosides,” Cancer Research, vol. 43, no. 8, pp. 3808–3813, 1983. View at Scopus
  442. R. Li and S. Ladisch, “Shedding of human neuroblastoma gangliosides,” Biochimica et Biophysica Acta, vol. 1083, no. 1, pp. 57–64, 1991. View at Publisher · View at Google Scholar · View at Scopus
  443. G. Schwarzmann, M. Wendeler, and K. Sandhoff, “Synthesis of novel NBD-GM1 and NBD-GM2 for the transfer activity of GM2-activator protein by a FRET-based assay system,” Glycobiology, vol. 15, no. 12, pp. 1302–1311, 2005. View at Publisher · View at Google Scholar · View at Scopus