About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2012 (2012), Article ID 707586, 6 pages
http://dx.doi.org/10.5402/2012/707586
Research Article

Withaferin A Induces Proteasome-Dependent Degradation of Breast Cancer Susceptibility Gene 1 and Heat Shock Factor 1 Proteins in Breast Cancer Cells

1Department of Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
2Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA

Received 23 May 2012; Accepted 1 August 2012

Academic Editors: A. Azem, A.-M. Lambeir, B. Penke, and A. Tavares

Copyright © 2012 Xuan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Uma Devi, “Withania somnifera dunal (Ashwagandha): potential plant source of a promising drug for cancer chemotherapy and radiosensitization,” Indian Journal of Experimental Biology, vol. 34, no. 10, pp. 927–932, 1996. View at Scopus
  2. S. D. Stan, Y. Zeng, and S. V. Singh, “Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells,” Nutrition and Cancer, vol. 60, no. 1, pp. 51–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. D. Stan, E. R. Hahm, R. Warin, and S. V. Singh, “Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo,” Cancer Research, vol. 68, no. 18, pp. 7661–7669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Kaileh, W. Vanden Berghe, A. Heyerick et al., “Withaferin A strongly elicits IκB kinase β hyperphosphorylation concomitant with potent inhibition of its kinase activity,” Journal of Biological Chemistry, vol. 282, no. 7, pp. 4253–4264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Koduru, R. Kumar, S. Srinivasan, M. B. Evers, and C. Damodaran, “Notch-1 inhibition by withaferin-A: a therapeutic target against colon carcinogenesis,” Molecular Cancer Therapeutics, vol. 9, no. 1, pp. 202–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Yu, A. Hamza, T. Zhang et al., “Withaferin A targets heat shock protein 90 in pancreatic cancer cells,” Biochemical Pharmacology, vol. 79, no. 4, pp. 542–551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Lee, E. R. Hahm, and S. V. Singh, “Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells,” Carcinogenesis, vol. 31, no. 11, pp. 1991–1998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Bargagna-Mohan, A. Hamza, Y. E. Kim et al., “The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin,” Chemistry and Biology, vol. 14, no. 6, pp. 623–634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. J. Linger and P. A. Kruk, “BRCA1 16 years later: risk-associated BRCA1 mutations and their functional implications,” FEBS Journal, vol. 277, no. 15, pp. 3086–3096, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. T. Holt, M. E. Thompson, C. Szabo et al., “Growth retardation and tumour inhibition by BRCA1,” Nature Genetics, vol. 12, no. 3, pp. 298–302, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Boettcher, J. Fredebohm, A. M. Gholami et al., “Decoding pooled RNAi screens by means of barcode tiling arrays,” BMC Genomics, vol. 11, no. 1, article 7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Liu, W. Zong, G. Wu et al., “Turnover of BRCA1 involves in radiation-induced apoptosis,” PLoS ONE, vol. 5, no. 12, Article ID e14484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Rastelli, S. Biancanelli, A. Falzetta et al., “Triple-negative breast cancer: current state of the art,” Tumori, vol. 96, no. 6, pp. 875–888, 2010. View at Scopus
  14. L. Meng, V. L. Gabai, and M. Y. Sherman, “Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis,” Oncogene, vol. 29, no. 37, pp. 5204–5213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Calderwood, “Heat shock proteins in breast cancer progression—a suitable case for treatment?” International Journal of Hyperthermia, vol. 26, no. 7, pp. 681–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Dai, L. Whitesell, A. B. Rogers, and S. Lindquist, “Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis,” Cell, vol. 130, no. 6, pp. 1005–1018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Zaarur, V. L. Gabai, J. A. Porco Jr., S. Calderwood, and M. Y. Sherman, “Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors,” Cancer Research, vol. 66, no. 3, pp. 1783–1791, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Zhang, A. K. Samadi, K. F. Roby, B. Timmermann, and M. S. Cohen, “Inhibition of cell growth and induction of apoptosis in ovarian carcinoma cell lines CaOV3 and SKOV3 by natural withanolide Withaferin A,” Gynecologic Oncology, vol. 124, no. 3, pp. 606–612, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Zhang, R. Mukerji, A. K. Samadi, and M. S. Cohen, “Down-regulation of estrogen receptor-alpha and REarranged during Transfection tyrosine kinase is associated with Withaferin A-induced apoptosis in MCF-7 breast cancer cells,” BMC Complementary and Alternative Medicine, vol. 11, pp. 84–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. I. Holmberg, S. A. Illman, M. Kallio, A. Mikhailov, and L. Sistonen, “Formation of nuclear HSF1 granules varies depending on stress stimuli,” Cell Stress and Chaperones, vol. 5, no. 3, pp. 219–228, 2000. View at Scopus
  21. M. Sano, S. Tokudome, N. Shimizu et al., “Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptor γ coactivator 1α,” Journal of Biological Chemistry, vol. 282, no. 35, pp. 25970–25980, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. D. Choudhury, H. Xu, and R. Baer, “Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression,” Journal of Biological Chemistry, vol. 279, no. 32, pp. 33909–33918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C.-X. Deng and S. G. Brodie, “Roles of BRCA1 and its interacting proteins,” BioEssays, vol. 22, no. 8, pp. 728–737, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Bae, S. Fan, Q. Meng et al., “BRCA1 induces antioxidant gene expression and resistance to oxidative stress,” Cancer Research, vol. 64, no. 21, pp. 7893–7909, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. V. L. Gabai, L. Meng, G. Kim, T. A. Mills, I. J. Benjamin, and M. Y. Sherman, “Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HuR,” Molecular and Cellular Biology, vol. 32, no. 5, pp. 929–940, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Santagata, R. Hu, N. U. Lin et al., “High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 45, pp. 18378–18383, 2011. View at Publisher · View at Google Scholar · View at Scopus