About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2012 (2012), Article ID 728571, 12 pages
http://dx.doi.org/10.5402/2012/728571
Review Article

Calpain Dysregulation in Alzheimer’s Disease

Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 8-140, Chicago, IL 60611, USA

Received 26 August 2012; Accepted 12 September 2012

Academic Editors: A. Caceres and B. Lenarcic

Copyright © 2012 Adriana Ferreira. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Chiu, T. F. Chen, P. K. Yip, M. S. Hua, and L. Y. Tang, “Behavioral and psychologic symptoms in different types of dementia,” Journal of the Formosan Medical Association, vol. 105, no. 7, pp. 556–562, 2006. View at Scopus
  2. L. E. Hebert, P. A. Scherr, J. L. Bienias, D. A. Bennett, and D. A. Evans, “Alzheimer disease in the US population: prevalence estimates using the 2000 census,” Archives of Neurology, vol. 60, no. 8, pp. 1119–1122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Mebane-Sims, “Alzheimer’s disease facts and figures,” Alzheimer’s Dement, vol. 5, pp. 234–270, 2009.
  4. G. G. Glenner and C. W. Wong, “Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein,” Biochemical and Biophysical Research Communications, vol. 120, no. 3, pp. 885–890, 1984. View at Scopus
  5. C. Haass and D. J. Selkoe, “Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide,” Cell, vol. 75, no. 6, pp. 1039–1042, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. B. A. Yankner and M. M. Mesulam, “β-amyloid and the pathogenesis of Alzheimer's disease,” The New England Journal of Medicine, vol. 325, no. 26, pp. 1849–1857, 1991. View at Scopus
  7. J. H. K. Tam and S. H. Pasternak, “Amyloid and Alzheimer’s disease: inside and out,” Canadian Journal of Neurological Sciences, vol. 39, pp. 286–289, 2012.
  8. D. J. Selkoe, “Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid β-protein,” Annals of the New York Academy of Sciences, vol. 924, pp. 17–25, 2000. View at Scopus
  9. T. E. Golde, “The Aβ hypothesis: leading us to rationally-designed therapeutic strategies for the treatment or prevention of Alzheimer disease,” Brain Pathology, vol. 15, no. 1, pp. 84–87, 2005. View at Scopus
  10. S. Sinha and I. Lieberburg, “Cellular mechanisms of β-amyloid production and secretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 20, pp. 11049–11053, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. H. M. Wisniewski, H. K. Narang, and R. D. Terry, “Neurofibrillary tangles of paired helical filaments,” Journal of the Neurological Sciences, vol. 27, no. 2, pp. 173–181, 1976. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Goedert, C. M. Wischik, R. A. Crowther, J. E. Walker, and A. Klug, “Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 11, pp. 4051–4055, 1988. View at Scopus
  13. M. Goedert, M. G. Spillantini, R. Jakes, D. Rutherford, and R. A. Crowther, “Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease,” Neuron, vol. 3, no. 4, pp. 519–526, 1989. View at Scopus
  14. M. Goedert, R. Jakes, R. A. Crowther et al., “The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 11, pp. 5066–5070, 1993. View at Scopus
  15. A. del C. Alonso, I. Grundke-Iqbal, and K. Iqbal, “Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules,” Nature Medicine, vol. 2, no. 7, pp. 783–787, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Grundke-Iqbal, K. Iqbal, M. Quinlan, Y.-C. Tung, M. S. Zaidi, and H. M. Wisniewski, “Microtubule-associated protein tau. A component of Alzheimer paired helical filaments,” The Journal of Biological Chemistry, vol. 261, no. 13, pp. 6084–6089, 1986. View at Scopus
  17. I. Grundke-Iqbal, A. W. Vorbrodt, K. Iqbal, Y. C. Tung, G. P. Wang, and H. M. Wisniewski, “Microtubule-associated polypeptides tau are altered in Alzheimer paired helical filaments,” Molecular Brain Research, vol. 4, no. 1, pp. 43–52, 1988. View at Scopus
  18. I. Grundke-Iqbal, K. Iqbal, Y.-C. Tung, M. Quinlan, H. M. Wisniewski, and L. I. Binder, “Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 13, pp. 44913–4917, 1986. View at Scopus
  19. A. L. Guillozet, S. Weintraub, D. C. Mash, and M. M. Mesulam, “Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment,” Archives of Neurology, vol. 60, no. 5, pp. 729–736, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Iqbal, A. del C. Alonso, S. Chen et al., “Tau pathology in Alzheimer disease and other tauopathies,” Biochimica et Biophysica Acta, vol. 1739, no. 2, pp. 198–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. S. Kosik, C. L. Joachim, and D. J. Selkoe, “Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 11, pp. 4044–4048, 1986. View at Scopus
  22. K. S. Kosik and S. M. Greemberg, “Tau protein and Alzheimer’s disease,” in Alzheimer’s Disease, R. Terry, R. Katzman, and K. L. Bick, Eds., pp. 335–344, Raven Press Ltd, New York, NY, USA, 1994.
  23. H. Braak, E. Braak, and E. M. Mandelkow, “A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads,” Acta Neuropathologica, vol. 87, no. 6, pp. 554–567, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. V. M.-Y. Lee, B. J. Balin, L. Otvos, and J. Q. Trojanowski, “A68: a major subunit of paired helical filaments and derivatized forms of normal tau,” Science, vol. 251, no. 4994, pp. 675–678, 1991. View at Scopus
  25. V. M.-Y. Lee, M. Goedert, and J. Q. Trojanowski, “Neurodegenerative tauopathies,” Annual Review of Neuroscience, vol. 24, pp. 1121–1159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. V. Arriagada, J. H. Growdon, E. T. Hedley-Whyte, and B. T. Hyman, “Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease,” Neurology, vol. 42, no. 3, pp. 631–639, 1992. View at Scopus
  27. M. Rapoport, H. N. Dawson, L. I. Binder, M. P. Vitek, and A. Ferreira, “Tau is essential to β-amyloid-induced neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 9, pp. 6364–6369, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. E. D. Roberson, K. Scearce-Levie, J. J. Palop et al., “Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model,” Science, vol. 316, no. 5825, pp. 750–754, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. G. Spillantini and M. Goedert, “Tau protein pathology in neurodegenerative diseases,” Trends in Neurosciences, vol. 21, no. 10, pp. 428–433, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. J. G. Wood, S. S. Mirra, N. J. Pollock, and L. I. Binder, “Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (τ),” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 11, pp. 4040–4043, 1986. View at Scopus
  31. H. Braak and E. Braak, “Neuropathological stageing of Alzheimer-related changes,” Acta Neuropathologica, vol. 82, no. 4, pp. 239–259, 1991. View at Scopus
  32. B. T. Hyman, J. C. Augustinack, and M. Ingelsson, “Transcriptional and conformational changes of the tau molecule in Alzheimer's disease,” Biochimica et Biophysica Acta, vol. 1739, no. 2, pp. 150–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. D. H. Geschwind, “Tau phosphorylation, tangles, and neurodegeneration: the chicken or the egg?” Neuron, vol. 40, no. 3, pp. 457–460, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Ballatore, V. M. Y. Lee, and J. Q. Trojanowski, “Tau-mediated neurodegeneration in Alzheimer's disease and related disorders,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 663–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Morris, S. Maeda, K. Vossel, and L. Mucke, “The many faces of tau,” Neuron, vol. 70, no. 3, pp. 410–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Novak, M. Prcina, and E. Kontsekova, “Tauons and prions: infamous cousins?” Alzheimer's Disease, vol. 26, pp. 413–430, 2011.
  37. A. Calignon, M. Polydoro, M. Suarez-Calvet, et al., “Propagation of tau pathology in a model of early Alzheimer’s disease,” Neuron, vol. 73, pp. 685–697, 2012.
  38. L. Liu, V. Drouet, J. W. Wu, et al., “Trans-synaptic spread of tau pathology in vivo,” PlosOne, vol. 7, Article ID e31303, 2012. View at Publisher · View at Google Scholar
  39. R. D. Terry, E. Masliah, D. P. Salmon et al., “Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment,” Annals of Neurology, vol. 30, no. 4, pp. 572–580, 1991. View at Publisher · View at Google Scholar · View at Scopus
  40. S. T. DeKosky and S. W. Scheff, “Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity,” Annals of Neurology, vol. 27, no. 5, pp. 457–464, 1990. View at Scopus
  41. P. Tiraboschi, L. A. Hansen, M. Alford, E. Masliah, L. J. Thal, and J. Corey-Bloom, “The decline in synapses and cholinergic activity is asynchronous in Alzheimer's disease,” Neurology, vol. 55, no. 9, pp. 1278–1283, 2000. View at Scopus
  42. D. J. Selkoe, “Alzheimer's disease is a synaptic failure,” Science, vol. 298, no. 5594, pp. 789–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. P. J. Yao, “Synaptic frailty and clathrin-mediated synaptic vesicle trafficking in Alzheimer's disease,” Trends in Neurosciences, vol. 27, no. 1, pp. 24–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J. E. Hamos, L. J. DeGennaro, and D. A. Drachman, “Synaptic loss in Alzheimer's disease and other dementias,” Neurology, vol. 39, no. 3, pp. 355–361, 1989. View at Scopus
  45. E. Marcello, R. Epis, C. Saraceno, and M. Di Luca, “Synaptic dysfunction in Alzheimer’s disease,” in Synaptic Plasticity, M. R. Kreutz and C. Sala, Eds., pp. 573–601, Springer, Weinheim, Germany, 2012.
  46. C. Bertoni-Freddari, P. Fattoretti, M. Pieroni, W. Meier-Ruge, and J. Ulrich, “Enlargement of synaptic size as a compensative reaction in aging and dementia,” Pathology Research and Practice, vol. 188, no. 4-5, pp. 612–615, 1992. View at Scopus
  47. M. C. Gastard, J. C. Troncoso, and V. E. Koliatsos, “Caspase activation in the limbic cortex of subjects with early Alzheimer's disease,” Annals of Neurology, vol. 54, no. 3, pp. 393–398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. W. G. Honer, “Pathology of presynaptic proteins in Alzheimer's disease: more than simple loss of terminals,” Neurobiology of Aging, vol. 24, no. 8, pp. 1047–1062, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Hsiao, P. Chapman, S. Nilsen et al., “Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice,” Science, vol. 274, no. 5284, pp. 99–102, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. D. L. King and G. W. Arendash, “Maintained synaptophysin immunoreactivity in Tg2576 transgenic mice during aging: correlations with cognitive impairment,” Brain Research, vol. 926, no. 1-2, pp. 58–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. D. E. Goll, V. F. Thompson, H. Li, W. Wei, and J. Cong, “The calpain system,” Physiological Reviews, vol. 83, no. 3, pp. 731–801, 2003. View at Scopus
  52. Y. Ono and H. Sorimachi, “Calpains- an elaborate proteolytic system,” Biochimica et Biophysica Acta, vol. 1824, pp. 224–236, 2012.
  53. P. S. Vosler, C. S. Brennan, and J. Chen, “Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration,” Molecular Neurobiology, vol. 38, no. 1, pp. 78–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. A. Nixon, “The calpains in aging and aging-related diseases,” Ageing Research Reviews, vol. 2, no. 4, pp. 407–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Suzuki and H. Sorimachi, “A novel aspect of calpain activation,” FEBS Letters, vol. 433, no. 1-2, pp. 1–4, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Moldoveanu, C. M. Hosfield, D. Lim, J. S. Elce, Z. Jia, and P. L. Davies, “A Ca2+ switch aligns the active site of calpain,” Cell, vol. 108, no. 5, pp. 649–660, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. C. M. Hosfield, J. S. Elce, P. L. Davies, and Z. Jia, “Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation,” EMBO Journal, vol. 18, no. 24, pp. 6880–6889, 1999. View at Scopus
  58. S. Strobl, C. Fernandez-Catalan, M. Braun et al., “The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 2, pp. 588–592, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Tompa, Y. Emori, H. Sorimachi, K. Suzuki, and P. Friedrich, “Domain III of calpain is a Ca2+-regulated phospholipid-binding domain,” Biochemical and Biophysical Research Communications, vol. 280, no. 5, pp. 1333–1339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Sorimachi and K. Suzuki, “The structure of calpain,” Journal of Biochemistry, vol. 129, no. 5, pp. 653–664, 2001. View at Scopus
  61. E. Carafoli and M. Molinari, “Calpain: a protease in search of a function?” Biochemical and Biophysical Research Communications, vol. 247, no. 2, pp. 193–203, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Hamakubo, R. Kannagi, T. Murachi, and A. Matus, “Distribution of calpains I and II in rat brain,” Journal of Neuroscience, vol. 6, no. 11, pp. 3103–3111, 1986. View at Scopus
  63. L. S. Perlmutter, R. Siman, C. Gall, P. Seubert, M. Baudry, and G. Lynch, “The ultrastructural localization of calcium-activated protease 'calpain' in rat brain,” Synapse, vol. 2, no. 1, pp. 79–88, 1988. View at Scopus
  64. T. Murachi, M. Hatanaka, and T. Hamakubo, “Calpains and neuropeptide metabolism,” in Neuropeptides and Their Peptidases, T. E. Chichester, Ed., pp. 202–228,, Ellis Horwood, Chichester, UK, 1987.
  65. D. E. Croall, C. A. Slaughter, H. S. Wortham, C. M. Skelly, L. DeOgny, and C. R. Moomaw, “Polyclonal antisera specific for the proenzyme form of each calpain,” Biochimica et Biophysica Acta, vol. 1121, no. 1-2, pp. 47–53, 1992. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Fischer, J. Vandekerckhove, C. Ampe, P. Traub, and K. Weber, “Protein-chemical identification of the major cleavage sites of the Ca2+ proteinase on murine vimentin, the mesenchymal intermediate filament protein,” Biological Chemistry Hoppe-Seyler, vol. 367, no. 11, pp. 1147–1152, 1986. View at Scopus
  67. A. S. Harris, D. E. Croall, and J. S. Morrow, “The calmodulin-binding site in α-fodrin is near the calcium-dependent protease-I cleavage site,” The Journal of Biological Chemistry, vol. 263, no. 30, pp. 15754–15761, 1988. View at Scopus
  68. P. R. Stabach, C. D. Cianci, S. B. Glantz, Z. Zhang, and J. S. Morrow, “Site-directed mutagenesis of αII spectrin at codon 1175 modulates its μ-calpain susceptibility,” Biochemistry, vol. 36, no. 1, pp. 57–65, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. S. A. Coolican and D. R. Hathaway, “Effect of L-α-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease. Reduction of the Ca2+ requirement for autolysis,” The Journal of Biological Chemistry, vol. 259, no. 19, pp. 11627–11630, 1984. View at Scopus
  70. T. C. Saido, K. Mizuno, and K. Suzuki, “Proteolysis of protein kinase C by calpain: effect of acidic phospholipids,” Biomedica Biochimica Acta, vol. 50, no. 4–6, pp. 485–489, 1991. View at Scopus
  71. T. C. Saido, M. Shibata, T. Takenawa, H. Murofushi, and K. Suzuki, “Positive regulation of μ-calpain action by polyphosphoinositides,” The Journal of Biological Chemistry, vol. 267, no. 34, pp. 24585–24590, 1992. View at Scopus
  72. R. Kiss, D. Kovács, P. Tompa, and A. Perczel, “Local structural preferences of calpastatin, the intrinsically unstructured protein inhibitor of calpain,” Biochemistry, vol. 47, no. 26, pp. 6936–6945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. V. F. Thompson and D. E. Goll, “Purification of m-calpain, m-calpain, and calpastatin from animal tissues,” in Methods in Molecular Biology. Calpain Methods and Protocols, J. S. Elce and N. J. Totowa, Eds., vol. 144, pp. 3–6, Humana Press, 2000.
  74. M. V. Rao, P. S. Mohan, C. M. Peterhoff et al., “Marked calpastatin (CAST) depletion in Alzheimer's disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by CAST overexpression,” Journal of Neuroscience, vol. 28, no. 47, pp. 12241–12254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Emori, H. Kawasaki, S. Imajoh, K. Imahori, and K. Suzuki, “Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 11, pp. 3590–3594, 1987. View at Scopus
  76. M. Maki, E. Takano, H. Mori, R. Kannagi, T. Murachi, and M. Hatanaka, “Repetitive region of calpastatin is a functional unit of the proteinase inhibitor,” Biochemical and Biophysical Research Communications, vol. 143, no. 1, pp. 300–308, 1987. View at Scopus
  77. M. Maki, E. Takano, H. Mori, A. Sato, T. Murachi, and M. Hatanaka, “All four internally repetitive domains of pig calpastatin possess inhibitory activities against calpains I and II,” FEBS Letters, vol. 223, no. 1, pp. 174–180, 1987. View at Scopus
  78. S. Barnoy, M. Maki, and N. S. Kosower, “Overexpression of calpastatin inhibits L8 myoblast fusion,” Biochemical and Biophysical Research Communications, vol. 332, no. 3, pp. 697–701, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Higuchi, M. Tomioka, J. Takano et al., “Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors,” The Journal of Biological Chemistry, vol. 280, no. 15, pp. 15229–15237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Maekawa, J. K. Lee, T. Nagaya et al., “Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion,” Journal of Molecular and Cellular Cardiology, vol. 35, no. 10, pp. 1277–1284, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Glading, P. Chang, D. A. Lauffenburger, and A. Wells, “Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway,” The Journal of Biological Chemistry, vol. 275, no. 4, pp. 2390–2398, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Shiraha, A. Glading, J. Chou, Z. Jia, and A. Wells, “Activation of m-calpain (calpain II) by epidermal growth factor is limited by protein kinase A phosphorylation of m-calpain,” Molecular and Cellular Biology, vol. 22, no. 8, pp. 2716–2727, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. S. D. Smith, Z. Jia, K. K. Huynh, A. Wells, and J. S. Elce, “Glutamate substitutions at a PKA consensus site are consistent with inactivation of calpain by phosphorylation,” FEBS Letters, vol. 542, no. 1–3, pp. 115–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Averna, R. De Tullio, F. Salamino, R. Minafra, S. Pontremoli, and E. Melloni, “Age-dependent degradation of calpastatin in kidney of hypertensive rats,” The Journal of Biological Chemistry, vol. 276, no. 42, pp. 38426–38432, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Benuck, M. Banay-Schwartz, T. DeGuzman, and A. Lajtha, “Changes in brain protease activity in aging,” Journal of Neurochemistry, vol. 67, no. 5, pp. 2019–2029, 1996. View at Scopus
  86. H. Manya, M. Inomata, T. Fujimori et al., “Klotho protein deficiency leads to overactivation of μ-calpain,” The Journal of Biological Chemistry, vol. 277, no. 38, pp. 35503–35508, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. J. A. Sloane, J. D. Hinman, M. Lubonia, W. Hollander, and C. R. Abraham, “Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey,” Journal of Neurochemistry, vol. 84, no. 1, pp. 157–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. K. I. Saito, J. S. Elce, J. E. Hamos, and R. A. Nixon, “Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 7, pp. 2628–2632, 1993. View at Scopus
  89. T. Saitoh, E. Masliah, L. W. Jin, G. M. Cole, T. Wieloch, and I. P. Shapiro, “Protein kinases and phosphorylation in neurologic disorders and cell death,” Laboratory Investigation, vol. 64, no. 5, pp. 596–616, 1991. View at Scopus
  90. A. Ferreira and E. H. Bigio, “Calpain-mediated tau cleavage: a mechanism leading to neurodegeneration shared by multiple tauopathies,” Molecular Medicine, vol. 17, no. 7-8, pp. 676–685, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Peterson and J. E. Goldman, “Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 8, pp. 2758–2762, 1986. View at Scopus
  92. J. O. Karlsson, K. Blennow, B. Holmberg et al., “Increased proteolytic activity in erythrocytes from patients with Alzheimer's disease,” Dementia, vol. 3, no. 4, pp. 200–204, 1992. View at Scopus
  93. G. N. Patrick, L. Zukerberg, M. Nikolic, S. de la Monte, P. Dikkes, and L.-H. Tsai, “Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration,” Nature, vol. 402, no. 6762, pp. 615–622, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Tsuji, S. Shimohama, J. Kimura, and K. Shimizu, “M-calpain (calcium-activated neutral proteinase) in alzheimer's disease brains,” Neuroscience Letters, vol. 248, no. 2, pp. 109–112, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. B. L. Kelly, R. Vassar, and A. Ferreira, “β-amyloid-induced dynamin 1 depletion in hippocampal neurons: a potential mechanism for early cognitive decline in Alzheimer disease,” The Journal of Biological Chemistry, vol. 280, no. 36, pp. 31746–31753, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. B. L. Kelly and A. Ferreira, “β-amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons,” The Journal of Biological Chemistry, vol. 281, no. 38, pp. 28079–28089, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. B. L. Kelly and A. Ferreira, “Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons,” Neuroscience, vol. 147, no. 1, pp. 60–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. K. M. Abdel-Hamid and K. G. Baimbridge, “The effects of artificial calcium buffers on calcium responses and glutamate-mediated excitotoxicity in cultured hippocampal neurons,” Neuroscience, vol. 81, no. 3, pp. 673–687, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. J. C. Dodart, K. R. Bales, K. S. Gannon et al., “Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model,” Nature Neuroscience, vol. 5, no. 5, pp. 452–457, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Rovira, N. Arbez, and J. Mariani, “Aβ(25–35) and Aβ(1–40) act on different calcium channels in CA1 hippocampal neurons,” Biochemical and Biophysical Research Communications, vol. 296, no. 5, pp. 1317–1321, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. Z. Qiu and D. L. Gruol, “Interleukin-6, β-amyloid peptide and NMDA interactions in rat cortical neurons,” Journal of Neuroimmunology, vol. 139, no. 1-2, pp. 51–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. J. E. Huettner and B. P. Bean, “Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 4, pp. 1307–1311, 1988. View at Scopus
  103. R. Bullock, “Efficacy and safety of memantine in moderate-to-severe Alzheimer disease: the evidence to date,” Alzheimer Disease and Associated Disorders, vol. 20, no. 1, pp. 23–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. R. J. Fanelli, R. T. McCarthy, and J. Chisholm, “Neuropharmacology of nimodipine: from single channels to behavior,” Annals of the New York Academy of Sciences, vol. 747, pp. 336–350, 1994. View at Scopus
  105. A. M. Nicholson and A. Ferreira, “Cholesterol and neuronal susceptibility to beta-amyloid toxicity,” Trends in Cognitive Sciences, vol. 5, pp. 35–56, 2011.
  106. M. Kivipelto, E. L. Helkala, T. Hänninen et al., “Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study,” Neurology, vol. 56, no. 12, pp. 1683–1689, 2001. View at Scopus
  107. A. Solomon, M. Kivipelto, B. Wolozin, J. Zhou, and R. A. Whitmer, “Midlife serum cholesterol and increased risk of Alzheimer's and vascular dementia three decades later,” Dementia and Geriatric Cognitive Disorders, vol. 28, no. 1, pp. 75–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. E. M. L. Bastiaanse, L. D. E. Atsma, M. M. C. Kuijpers, and A. Van der Laarse, “The effect of sarcolemmal cholesterol content on intracellular calcium ion concentration in cultured cardiomyocytes,” Archives of Biochemistry and Biophysics, vol. 313, no. 1, pp. 58–63, 1994. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Hartmann, A. Eckert, and W. E. Muller, “Apolipoprotein E and cholesterol affect neuronal calcium signalling: the possible relationship to β-amyloid neurotoxicity,” Biochemical and Biophysical Research Communications, vol. 200, no. 3, pp. 1185–1192, 1994. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Kawahara and Y. Kuroda, “Intracellular calcium changes in neuronal cells induced by Alzheimer's β-amyloid protein are blocked by estradiol and cholesterol,” Cellular and Molecular Neurobiology, vol. 21, no. 1, pp. 1–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. A. M. Nicholson and A. Ferreira, “Increased membrane cholesterol might render mature hippocampal neurons more susceptible to β-Amyloid-induced calpain activation and tau toxicity,” Journal of Neuroscience, vol. 29, no. 14, pp. 4640–4651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. A. M. Nicholson, D. N. R. Methner, and A. Ferreira, “Membrane cholesterol modulates β-amyloid-dependent Tau cleavage by inducing changes in the membrane content and localization of N-methyl-D-aspartic acid receptors,” The Journal of Biological Chemistry, vol. 286, no. 2, pp. 976–986, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Vaisid, N. S. Kosower, A. Katzav, J. Chapman, and S. Barnoy, “Calpastatin levels affect calpain activation and calpain proteolytic activity in APP transgenic mouse model of Alzheimer's disease,” Neurochemistry International, vol. 51, no. 6-7, pp. 391–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Blomgren, U. Hallin, A. L. Andersson et al., “Calpastatin is up-regulated in response to hypoxia and is a suicide substrate to calpain after neonatal cerebral hypoxia-ischemia,” The Journal of Biological Chemistry, vol. 274, no. 20, pp. 14046–14052, 1999. View at Publisher · View at Google Scholar · View at Scopus
  115. R. L. Mellgren, M. T. Mericle, and R. D. Lane, “Proteolysis of the calcium-dependent protease inhibitor by myocardial calcium-dependent protease,” Archives of Biochemistry and Biophysics, vol. 246, no. 1, pp. 233–239, 1986. View at Scopus
  116. E. Adamec, P. Mohan, J. P. Vonsattel, and R. A. Nixon, “Calpain activation in neurodegenerative diseases: confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2,” Acta Neuropathologica, vol. 104, no. 1, pp. 92–104, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. F. Grynspan, W. R. Griffin, A. Cataldo, S. Katayama, and R. A. Nixon, “Active site-directed antibodies identify calpain II as an early- appearing and pervasive component of neurofibrillary pathology in Alzheimer's disease,” Brain Research, vol. 763, no. 2, pp. 145–158, 1997. View at Publisher · View at Google Scholar · View at Scopus
  118. S. Shimohama, T. Suenaga, W. Araki, Y. Yamaoaka, K. Shimizu, and J. Kimura, “Presence of calpain II immunoreactivity in senile plaques in Alzheimer's disease,” Brain Research, vol. 558, no. 1, pp. 105–108, 1991. View at Publisher · View at Google Scholar · View at Scopus
  119. S. S. Sisodia, S. H. Kim, and G. Thinakaran, “Function and dysfunction of the presenilins,” American Journal of Human Genetics, vol. 65, no. 1, pp. 7–12, 1999. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Vassar, B. D. Bennett, S. Babu-Khan et al., “β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE,” Science, vol. 286, no. 5440, pp. 735–741, 1999. View at Publisher · View at Google Scholar · View at Scopus
  121. D. Edbauer, E. Winkler, J. T. Regula, B. Pesold, H. Steiner, and C. Haass, “Reconstitution of γ-secretase activity,” Nature Cell Biology, vol. 5, no. 5, pp. 486–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. J. T. Jarrett, E. P. Berger, and P. T. Lansbury, “The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease,” Biochemistry, vol. 32, no. 18, pp. 4693–4697, 1993. View at Scopus
  123. M. Citron, T. Oltersdorf, C. Haass et al., “Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production,” Nature, vol. 360, no. 6405, pp. 672–674, 1992. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Citron, D. Westaway, W. Xia et al., “Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice,” Nature Medicine, vol. 3, no. 1, pp. 67–72, 1997. View at Publisher · View at Google Scholar · View at Scopus
  125. X. D. Cai, T. E. Golde, and S. G. Younkin, “Release of excess amyloid β protein from a mutant amyloid β protein precursor,” Science, vol. 259, no. 5094, pp. 514–516, 1993. View at Scopus
  126. N. Suzuki, T. T. Cheung, X. D. Cai et al., “An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants,” Science, vol. 264, no. 5163, pp. 1336–1340, 1994. View at Scopus
  127. H. Fukumoto, B. S. Cheung, B. T. Hyman, and M. C. Irizarry, “β-secretase protein and activity are increased in the neocortex in Alzheimer disease,” Archives of Neurology, vol. 59, no. 9, pp. 1381–1389, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. L. B. Yang, K. Lindholm, R. Yan et al., “Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease,” Nature Medicine, vol. 9, no. 1, pp. 3–4, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. Q. Li and T. C. Südhof, “Cleavage of amyloid-beta precursor protein and amyloid-beta precursor-like protein by BACE 1,” The Journal of Biological Chemistry, vol. 279, no. 11, pp. 10542–10550, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. B. Liang, B.-Y. Duan, X.-P. Zhou, J.-X. Gong, and Z.-G. Luo, “Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of alzheimer disease,” The Journal of Biological Chemistry, vol. 285, no. 36, pp. 27737–27744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. M. Higuchi, N. Iwata, Y. Matsuba, et al., “Mechanistic involvement of the calpain-calpastatin system in Alzheimer neuropathology,” The FASEB Journal, vol. 26, pp. 1204–1217, 2012.
  132. J. Biernat, N. Gustke, G. Drewes, E. M. Mandelkow, and E. Mandelkow, “Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding,” Neuron, vol. 11, no. 1, pp. 153–163, 1993. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Biernat, E.-M. Mandelkow, C. Schroter et al., “The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region,” EMBO Journal, vol. 11, no. 4, pp. 1593–1597, 1992. View at Scopus
  134. G. T. Bramblett, M. Goedert, R. Jakes, S. E. Merrick, J. Q. Trojanowski, and V. M.-Y. Lee, “Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding,” Neuron, vol. 10, no. 6, pp. 1089–1099, 1993. View at Publisher · View at Google Scholar · View at Scopus
  135. J. P. Brion, C. Smith, A. M. Couck, J. M. Gallo, and B. H. Anderton, “Developmental changes in τ phosphorylation: fetal τ is transiently phosphorylated in a manner similar to paired helical filament-τ characteristic of Alzheimer's disease,” Journal of Neurochemistry, vol. 61, no. 6, pp. 2071–2080, 1993. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Rapoport and A. Ferreira, “PD98059 prevents neurite degeneration induced by fibrillar β-amyloid in mature hippocampal neurons,” Journal of Neurochemistry, vol. 74, no. 1, pp. 125–133, 2000. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Busciglio, A. Lorenzo, J. Yeh, and B. A. Yankner, “β-amyloid fibrils induce tau phosphorylation and loss of microtubule binding,” Neuron, vol. 14, no. 4, pp. 879–888, 1995. View at Scopus
  138. A. Ferreira, Q. Lu, L. Orecchio, and K. S. Kosik, “Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar Aβ,” Molecular and Cellular Neurosciences, vol. 9, no. 3, pp. 220–234, 1997. View at Publisher · View at Google Scholar · View at Scopus
  139. T. B. Shea, A. N. Deargay, and F. J. Ekinci, “Beta-amyloid induced hyperphosphorylation of tau in human neuroblastoma cells involves MAP kinase,” Neuroscience Research Communications, vol. 22, pp. 45–49, 1998.
  140. M. Pérez, F. Hernández, A. Gómez-Ramos, M. Smith, G. Perry, and J. Avila, “Formation of aberrant phosphotau fibrillar polymers in neural cultured cells,” European Journal of Biochemistry, vol. 269, no. 5, pp. 1484–1489, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Jin, N. Shepardson, T. Yang, G. Chen, D. Walsh, and D. J. Selkoe, “Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5819–5824, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. L. Martin, X. Latypova, and F. Terro, “Post-translational modifications of tau protein: implications for Alzheimer's disease,” Neurochemistry International, vol. 58, no. 4, pp. 458–471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Takashima, K. Noguchi, K. Sato, T. Hoshino, and K. Imahori, “Tau protein kinase I is essential for amyloid β-protein-induced neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 16, pp. 7789–7793, 1993. View at Scopus
  144. F. J. Ekinci, K. U. Malik, and T. B. Shea, “Activation of the L voltage-sensitive calcium channel by mitogen- activated protein (MAP) kinase following exposure of neuronal cells to β- amyloid. MAP kinase mediates β-amyloid-induced neurodegeneration,” The Journal of Biological Chemistry, vol. 274, no. 42, pp. 30322–30327, 1999. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Alvarez, R. Toro, A. Cáceres, and R. B. Maccioni, “Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death,” FEBS Letters, vol. 459, no. 3, pp. 421–426, 1999. View at Publisher · View at Google Scholar · View at Scopus
  146. P. Goñi-Oliver, J. J. Lucas, J. Avila, and F. Hernández, “N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation,” The Journal of Biological Chemistry, vol. 282, no. 31, pp. 22406–22413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. G. I. Kusakawa, T. Saito, R. Onuki, K. Ishiguro, T. Kishimoto, and S. I. Hisanaga, “Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25,” The Journal of Biological Chemistry, vol. 275, no. 22, pp. 17166–17172, 2000. View at Publisher · View at Google Scholar · View at Scopus
  148. M.-S. Lee, Y. T. Kwon, M. Li, J. Peng, R. M. Friedlander, and L.-H. Tsai, “Neurotoxicity induces cleavage of p35 to p25 by calpain,” Nature, vol. 405, no. 6784, pp. 360–364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  149. R. Nath, M. Davis, A. W. Probert et al., “Processing of cdk5 activator p35 to its truncated form (p25) by Calpain in acutely injured neuronal cells,” Biochemical and Biophysical Research Communications, vol. 274, pp. 16–21, 2000. View at Scopus
  150. Veeranna, T. Kaji, B. Boland et al., “Calpain mediates calcium-induced activation of the Erk 1,2 MARK pathway and cytoskeletal phosphorylation in neurons: relevance to alzheimer's disease,” American Journal of Pathology, vol. 165, no. 3, pp. 795–805, 2004. View at Scopus
  151. A. L. Guillozet-Bongaarts, F. Garcia-Sierra, M. R. Reynolds et al., “Tau truncation during neurofibrillary tangle evolution in Alzheimer's disease,” Neurobiology of Aging, vol. 26, no. 7, pp. 1015–1022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. G. V. W. Johnson, R. S. Jope, and L. I. Binder, “Proteolysis of tau by calpain,” Biochemical and Biophysical Research Communications, vol. 163, no. 3, pp. 1505–1511, 1989. View at Scopus
  153. M. Mercken, F. Grynspan, and R. A. Nixon, “Differential sensitivity to proteolysis by brain calpain of adult human tau, fetal human tau and PHF-tau,” FEBS Letters, vol. 368, no. 1, pp. 10–14, 1995. View at Publisher · View at Google Scholar · View at Scopus
  154. L.-S. Yang and H. Ksiezak-Reding, “Calpain-induced proteolysis of normal human tau and tau associated with paired helical filaments,” European Journal of Biochemistry, vol. 233, no. 1, pp. 9–17, 1995. View at Scopus
  155. L. S. Yang, W. Gordon-Krajcer, and H. Ksiezak-Reding, “Tau released from paired helical filaments with formic acid or guanidine is susceptible to calpain-mediated proteolysis,” Journal of Neurochemistry, vol. 69, no. 4, pp. 1548–1558, 1997. View at Scopus
  156. M. C. Liu, F. Kobeissy, W. Zheng, Z. Zhang, R. L. Hayes, and K. K. Wang, “Dual vulnerability of tau to calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions,” ASN Neuro, vol. 3, no. 1, article e00051, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. J. Reifert, D. Hartung-Cranston, and S. C. Feinstein, “Amyloid β-mediated cell death of cultured hippocampal neurons reveals extensive tau fragmentation without increased full-length tau phosphorylation,” The Journal of Biological Chemistry, vol. 286, no. 23, pp. 20797–20811, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. G. Amadoro, V. Corsetti, A. Stringaro et al., “A NH2 tau fragment targets neuronal mitochondria at AD synapses: possible implications for neurodegeneration,” Journal of Alzheimer's Disease, vol. 21, no. 2, pp. 445–470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. A. Atlante, G. Amadoro, A. Bobba et al., “A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator,” Biochimica et Biophysica Acta, vol. 1777, no. 10, pp. 1289–1300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. S.-Y. Park and A. Ferreira, “The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates β-amyloid-induced neurodegeneration,” Journal of Neuroscience, vol. 25, no. 22, pp. 5365–5375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  161. S.-Y. Park, C. E. Tournell, R. C. Sinjoanu, and A. Ferreira, “Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons,” Neuroscience, vol. 144, no. 1, pp. 119–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. G. Amadoro, M. T. Ciotti, M. Costanzi, V. Cestari, P. Calissano, and N. Canu, “NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2892–2897, 2006. View at Publisher · View at Google Scholar · View at Scopus
  163. J. B. Reinecke, S. L. DeVos, J. P. McGrath, et al., “Implicating calpain in tau-mediated toxicity in vivo,” PLoS One, vol. 6, Article ID e23865, 2011.
  164. S. Garg, T. Timm, E. M. Mandelkow, E. Mandelkow, and Y. Wang, “Cleavage of tau by calpain in Alzheimer's disease: the quest for the toxic 17 kD fragment,” Neurobiology of Aging, vol. 32, no. 1, pp. 1–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. P. J. Yao, M. Zhu, E. I. Pyun et al., “Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease,” Neurobiology of Disease, vol. 12, no. 2, pp. 97–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  166. J. Liu, M. C. Liu, and K. K. Wang, “Calpain in the CNS: from synaptic function to neurotoxicity,” Science Signaling, vol. 1, no. 14, article re1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. S. G. Clark, D. L. Shurland, E. M. Meyerowitz, C. I. Bargmann, and A. M. van der Bliek, “A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10438–10443, 1997. View at Scopus
  168. H. Damke, T. Baba, D. E. Warnock, and S. L. Schmid, “Induction of mutant dynamin specifically blocks endocytic coated vesicle formation,” Journal of Cell Biology, vol. 127, no. 4, pp. 915–934, 1994. View at Publisher · View at Google Scholar · View at Scopus
  169. J. H. Koenig and K. Ikeda, “Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval,” Journal of Neuroscience, vol. 9, no. 11, pp. 3844–3860, 1989. View at Scopus
  170. A. M. van der Bliek and E. M. Meyerowitz, “Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic,” Nature, vol. 351, no. 6325, pp. 411–414, 1991. View at Publisher · View at Google Scholar · View at Scopus
  171. R. C. Sinjoanu, S. Kleinschmidt, R. S. Bitner, J. D. Brioni, A. Moeller, and A. Ferreira, “The novel calpain inhibitor A-705253 potently inhibits oligomeric beta-amyloid-induced dynamin 1 and tau cleavage in hippocampal neurons,” Neurochemistry International, vol. 53, no. 3-4, pp. 79–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. R. Bi, X. Bi, and M. Baudry, “Phosphorylation regulates calpain-mediated truncation of glutamate ionotropic receptors,” Brain Research, vol. 797, no. 1, pp. 154–158, 1998. View at Publisher · View at Google Scholar · View at Scopus
  173. X. Bi, Y. Rong, J. Chen, S. Dang, Z. Wang, and M. Baudry, “Calpain-mediated regulation of NMDA receptor structure and function,” Brain Research, vol. 790, no. 1-2, pp. 245–253, 1998. View at Publisher · View at Google Scholar · View at Scopus
  174. X. Lu, Y. Rong, and M. Baudry, “Calpain-mediated degradation of PSD-95 in developing and adult rat brain,” Neuroscience Letters, vol. 286, no. 2, pp. 149–153, 2000. View at Publisher · View at Google Scholar · View at Scopus
  175. L. Vinade, J. D. Petersen, K. Do, A. Dosemeci, and T. S. Reese, “Activation of calpain may alter the postsynaptic density structure and modulate anchoring of NMDA receptors,” Synapse, vol. 40, no. 4, pp. 302–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  176. H. Y. Wu, F. C. Hsu, A. J. Gleichman, I. Baconguis, D. A. Coulter, and D. R. Lynch, “Fyn-mediated phosphorylation of NR2B Tyr-1336 controls calpain-mediated NR2B cleavage in neurons and heterologous systems,” The Journal of Biological Chemistry, vol. 282, no. 28, pp. 20075–20087, 2007. View at Publisher · View at Google Scholar · View at Scopus
  177. W. Xu, T. P. Wong, N. Chery, T. Gaertner, Y. T. Wang, and M. Baudry, “Calpain-mediated mGluR1α truncation: a key step in excitotoxicity,” Neuron, vol. 53, no. 3, pp. 399–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  178. L. Calò, V. Bruno, P. Spinsanti et al., “Interactions between ephrin-B and metabotropic glutamate 1 receptors in brain tissue and cultured neurons,” Journal of Neuroscience, vol. 25, no. 9, pp. 2245–2254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  179. A. Barco, J. M. Alarcon, and E. R. Kandel, “Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture,” Cell, vol. 108, no. 5, pp. 689–703, 2002. View at Publisher · View at Google Scholar · View at Scopus
  180. Z. Liang, F. Liu, I. Grundke-Iqbal, K. Iqbal, and C. X. Gong, “Down-regulation of cAMP-dependent protein kinase by over-activated calpain in Alzheimer disease brain,” Journal of Neurochemistry, vol. 103, no. 6, pp. 2462–2470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  181. J. S. C. Arthur, J. S. Elce, C. Hegadorn, K. Williams, and P. A. Greer, “Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division,” Molecular and Cellular Biology, vol. 20, no. 12, pp. 4474–4481, 2000. View at Publisher · View at Google Scholar · View at Scopus
  182. K. Taniguchi, K. Umeshita, M. Sakon et al., “Suppression of oxidative stress-induced hepatocyte injury by calpain antisense,” Journal of Surgical Research, vol. 111, no. 1, pp. 23–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  183. G. Di Rosa, T. Odrljin, R. A. Nixon, and O. Arancio, “Calpain inhibitors: a treatment for alzheimer's disease,” Journal of Molecular Neuroscience, vol. 19, no. 1-2, pp. 135–141, 2002. View at Scopus
  184. J. R. Brorson, C. J. Marcuccilli, and R. J. Miller, “Delayed antagonism of calpain reduces excitotoxicity in cultured neurons,” Stroke, vol. 26, no. 7, pp. 1259–1267, 1995. View at Scopus
  185. A. T. McCollum, F. Jafarifar, B. C. Lynn et al., “Inhibition of calpain-mediated cell death by a novel peptide inhibitor,” Experimental Neurology, vol. 202, no. 2, pp. 506–513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  186. F. Battaglia, F. Trinchese, S. Liu, S. Walter, R. A. Nixon, and O. Arancio, “Calpain inhibitors, a treatment for Alzheimer's disease: position paper,” Journal of Molecular Neuroscience, vol. 20, no. 3, pp. 357–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  187. S. Kunz, E. Niederberger, C. Ehnert et al., “The calpain inhibitor MDL 28170 prevents inflammation-induced neurofilament light chain breakdown in the spinal cord and reduces thermal hyperalgesia,” Pain, vol. 110, no. 1-2, pp. 409–418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  188. P. A. Li, W. Howlett, Q. P. He, H. Miyashita, M. Siddiqui, and A. Shuaib, “Postischemic treatment with calpain inhibitor MDL 28170 ameliorates brain damage in a gerbil model of global ischemia,” Neuroscience Letters, vol. 247, no. 1, pp. 17–20, 1998. View at Publisher · View at Google Scholar · View at Scopus
  189. W. Lubisch, E. Beckenbach, S. Bopp et al., “Benzoylalanine-derived ketoamides carrying vinylbenzyl amino residues: discovery of potent water-soluble calpain inhibitors with oral bioavailability,” Journal of Medicinal Chemistry, vol. 46, no. 12, pp. 2404–2412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  190. I. Granic, C. Nyakas, P. G. M. Luiten et al., “Calpain inhibition prevents amyloid-β-induced neurodegeneration and associated behavioral dysfunction in rats,” Neuropharmacology, vol. 59, no. 4-5, pp. 334–342, 2010. View at Publisher · View at Google Scholar · View at Scopus