About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2012 (2012), Article ID 826305, 6 pages
http://dx.doi.org/10.5402/2012/826305
Research Article

The Effect of the Combined Action of Roscovitine and Paclitaxel on the Apoptotic and Cell Cycle Regulatory Mechanisms in Colon and Anaplastic Thyroid Cancer Cells

Department of Fundamental Problems of Endocrinology, State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism”, AMS of Ukraine, Kyiv 04114, Ukraine

Received 6 July 2012; Accepted 7 August 2012

Academic Editors: H. Pant and Y. Soini

Copyright © 2012 V. V. Pushkarev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Bergstralh and J. P. Y. Ting, “Microtubule stabilizing agents: their molecular signaling consequences and the potential for enhancement by drug combination,” Cancer Treatment Reviews, vol. 32, no. 3, pp. 166–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Malumbres and M. Barbacid, “Cell cycle, CDKs and cancer: a changing paradigm,” Nature Reviews Cancer, vol. 9, no. 3, pp. 153–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Mohapatra, D. Coppola, A. I. Riker, and W. J. Pledger, “Roscovitine inhibits differentiation and invasion in a three-dimensional skin reconstruction model of metastatic melanoma,” Molecular Cancer Research, vol. 5, no. 2, pp. 145–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. V. M. Pushkarev, D. V. Starenki, V. A. Saenko et al., “Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells,” Endocrinology, vol. 145, no. 7, pp. 3143–3152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. T. McGrogan, B. Gilmartin, D. N. Carney, and A. McCann, “Taxanes, microtubules and chemoresistant breast cancer,” Biochimica et Biophysica Acta, vol. 1785, no. 2, pp. 96–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. V. M. Pushkarev, D. V. Starenki, V. A. Saenko et al., “Differential effects of low and high doses of Taxol in anaplastic thyroid cancer cells: possible implication of the Pin1 prolyl isomerase,” Experimental Oncology, vol. 30, no. 3, pp. 190–194, 2008. View at Scopus
  7. D. T. Terrano, M. Upreti, and T. C. Chambers, “Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis,” Molecular and Cellular Biology, vol. 30, no. 3, pp. 640–656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. H. Ghahremani, E. Keramaris, T. Shree et al., “Interaction of the c-Jun/JNK pathway and cyclin-dependent kinases in death of embryonic cortical neurons evoked by DNA damage,” The Journal of Biological Chemistry, vol. 277, no. 38, pp. 35586–35596, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Du, C. S. Lyle, T. B. Obey et al., “Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: evidence that mitotic bcl-2 phosphorylation is JNK-independent,” The Journal of Biological Chemistry, vol. 279, no. 12, pp. 11957–11966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Meijer, A. Borgne, O. Mulner et al., “Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5,” European Journal of Biochemistry, vol. 243, no. 1-2, pp. 527–536, 1997. View at Scopus
  11. L. Meijer and E. Raymond, “Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials,” Accounts of Chemical Research, vol. 36, no. 6, pp. 417–425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Lu, L. Chen, Y. Peng, and J. Chen, “Activation of p53 by roscovitine-mediated suppression of MDM2 expression,” Oncogene, vol. 20, no. 25, pp. 3206–3216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Dey, E. T. Wong, C. F. Cheok, V. Tergaonkar, and D. P. Lane, “R-Roscovitine simultaneously targets both the p53 and NF-κB pathways and causes potentiation of apoptosis: implications in cancer therapy,” Cell Death and Differentiation, vol. 15, no. 2, pp. 263–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Ortiz-Ferrón, R. Yerbes, A. Eramo, A. I. López-Pérez, R. de Maria, and A. López-Rivas, “Roscovitine sensitizes breast cancer cells to TRAIL-induced apoptosis through a pleiotropic mechanism,” Cell Research, vol. 18, no. 6, pp. 664–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. O. M. Tirado, S. Mateo-Lozano, and V. Notario, “Roscovitine is an effective inducer of apoptosis of Ewing's sarcoma family tumor cells in vitro and in vivo,” Cancer Research, vol. 65, no. 20, pp. 9320–9327, 2005. View at Publisher · View at Google Scholar · View at Scopus