About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2013 (2013), Article ID 182601, 6 pages
http://dx.doi.org/10.1155/2013/182601
Research Article

Serum Prolidase Activity, Oxidant and Antioxidant Status in Nonulcer Dyspepsia and Healthy Volunteers

1Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
2Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
3Department of Biochemistry, School of Life Sciences, Dr. B. R. Ambedkar University, Agra 282002, India

Received 16 July 2013; Accepted 10 September 2013

Academic Editors: H. Inoue, A. Jiménez, A.-M. Lambeir, F. May, and B. Penke

Copyright © 2013 Shweta Kumari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Marshall and J. R. Warren, “Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration,” The Lancet, vol. 1, no. 8390, pp. 1311–1314, 1984. View at Scopus
  2. M. J. Blaser, “Hypothesis: the changing relationships of Helicobacter pylori and humans: implications for health and disease,” Journal of Infectious Diseases, vol. 179, no. 6, pp. 1523–1530, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Ranjan, “Non-ulcer dyspepsia,” Journal of the Association of Physicians of India, vol. 60, pp. 13–15, 2012.
  4. D. K. Mukhopadhyay, R. K. Tandon, S. Dasarathy, M. Mathur, and J. P. Wali, “A study of Helicobacter pylori in north Indian subjects with non-ulcer dyspepsia,” Indian Journal of Gastroenterology, vol. 11, no. 2, pp. 76–79, 1992. View at Scopus
  5. S. Tripathi, U. Ghoshal, B. Mittal, D. Chourasia, S. Kumar, and U. C. Ghoshal, “Association between gastric mucosal glutathione-S-transferase activity, glutathione-S-transferase gene polymorphisms and Helicobacter pylori infection in gastric cancer,” Indian Journal of Gastroenterology, vol. 30, no. 6, pp. 257–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Sotoudehmanesh, A. A. Asgari, H. T. Fakheri, M. Nouraie, M. Khatibian, and N. Shirazian, “Peptic ulcer bleeding: is Helicobacter pylori a risk factor in an endemic area?” Indian Journal of Gastroenterology, vol. 24, no. 2, pp. 59–61, 2005. View at Scopus
  7. Y. Bafandeh, H. Esmaeeli, and S. Aharizad, “Helicobacter pylori infection rates in duodenal ulcer patients in a population with high prevalence of infection,” Indian Journal of Gastroenterology, vol. 24, no. 3, p. 130, 2005. View at Scopus
  8. S. Tiwari, U. Ghoshal, U. C. Ghoshal et al., “Helicobacter pylori-induced apoptosis in pathogenesis of gastric carcinoma,” Indian Journal of Gastroenterology, vol. 24, no. 5, pp. 193–196, 2005. View at Scopus
  9. M. Bergmann and J. S. Fruton, “On proteolytic enzymes, XII, regarding the specificity of aminopeptidase and carboxypeptidase, a new type of enzyme in the intestinal tract,” Journal of Biological Chemistry, vol. 117, no. 1, pp. 189–202, 1937.
  10. A. Surazynski, W. Miltyk, J. Palka, and J. M. Phang, “Prolidase-dependent regulation of collagen biosynthesis,” Amino Acids, vol. 35, no. 4, pp. 731–738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Palka and J. M. Phang, “Prolidase activity in fibroblasts is regulated by interaction of extracellular matrix with cell surface integrin receptors,” Journal of Cellular Biochemistry, vol. 67, no. 2, pp. 166–175, 1997.
  12. G. Zanaboni, K. M. Dyne, A. Rossi, V. Monafo, and G. Cetta, “Prolidase deficiency: biochemical study of erythrocyte and skin fibroblast prolidase activity in Italian patients,” Haematologica, vol. 79, no. 1, pp. 13–18, 1994. View at Scopus
  13. I. Myara, A. Myara, and M. Mangeot, “Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease,” Clinical Chemistry, vol. 30, no. 2, pp. 211–215, 1984. View at Scopus
  14. A. B. Erbaǧci, M. Araz, A. Erbaǧci, M. Tarakcioglu, and E. S. Namiduru, “Serum prolidase activity as a marker of osteoporosis in type 2 diabetes mellitus,” Clinical Biochemistry, vol. 35, pp. 263–268, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Altindag, O. Erel, N. Aksoy, S. Selek, H. Celik, and M. Karaoglanoglu, “Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis,” Rheumatology International, vol. 27, no. 4, pp. 339–344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Santra, A. Chowdhury, S. Chaudhuri, J. Das Gupta, P. K. Banerjee, and D. N. Mazumder, “Oxidative stress in gastric mucosa in Helicobacter pylori infection,” Indian Journal of Gastroenterology, vol. 19, no. 1, pp. 21–23, 2000. View at Scopus
  17. Y. Naito and T. Yoshikawa, “Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress,” Free Radical Biology and Medicine, vol. 33, no. 3, pp. 323–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kato, S. Nakajima, Y. Nishino et al., “Association between gastric atrophy and Helicobacter pylori infection in Japanese children: a retrospective multicenter study,” Digestive Diseases and Sciences, vol. 51, no. 1, pp. 99–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Srivastava, A. Kashyap, M. Kumar, G. Nath, and A. K. Jain, “Mucosal IgA & IL-1b in Helicobacter pylori Infection,” Indian Journal of Clinical Biochemistry, vol. 28, no. 1, pp. 19–23, 2013.
  20. M. Aslan, Y. Nazligul, M. Horoz et al., “Serum prolidase activity and oxidative status in Helicobacter pylori infection,” Clinical Biochemistry, vol. 40, no. 1-2, pp. 37–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. E. Pounder and D. Ng, “The prevalence of Helicobacter pylori infection in different countries,” Alimentary Pharmacology and Therapeutics, Supplement, vol. 9, supplement 2, pp. 33–39, 1995. View at Scopus
  22. B. S. Ramakrishna, “Helicobacter pylori infection in India: the case against eradication,” Indian Journal of Gastroenterology, vol. 25, no. 1, pp. 25–28, 2006. View at Scopus
  23. L. M. Brown, “Helicobacter pylori: epidemiology and routes of transmission,” Epidemiologic Reviews, vol. 22, no. 2, pp. 283–297, 2000. View at Scopus
  24. J.-F. Tomb, O. White, A. R. Kerlavage et al., “The complete genome sequence of the gastric pathogen Helicobacter pylori,” Nature, vol. 388, no. 6642, pp. 539–547, 1997. View at Scopus
  25. Helicobacter pylori 26695, complete genome,” National Center for Biotechnology Information, 2008, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=128.
  26. Helicobacter pylori J99, complete genome,” National Center for Biotechnology Information, 2008, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=139.
  27. J. D. Oh, H. Kling-Bäckhed, M. Giannakis et al., “The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9999–10004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. F. Dixon, R. M. Genta, J. H. Yardley et al., “Classification and grading of Gastritis: the updated Sydney system,” American Journal of Surgical Pathology, vol. 20, no. 10, pp. 1161–1181, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Erel, “A novel automated method to measure total antioxidant response against potent free radical reactions,” Clinical Biochemistry, vol. 37, no. 2, pp. 112–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Erel, “A new automated colorimetric method for measuring total oxidant status,” Clinical Biochemistry, vol. 38, no. 12, pp. 1103–11111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Stolte and B. Bethke, “Elimination of Helicobacter pylori under treatment with omeprazole,” Zeitschrift fur Gastroenterologie, vol. 28, no. 6, pp. 271–274, 1990. View at Scopus
  32. D. D. Wayner, G. W. Burton, K. U. Ingold, L. R. C. Barclay, and S. J. Locke, “The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma,” Biochimica et Biophysica Acta, vol. 924, no. 3, pp. 408–419, 1987. View at Scopus
  33. T. Miyazawa, “Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay,” Free Radical Biology and Medicine, vol. 7, no. 2, pp. 209–217, 1989. View at Scopus
  34. S. B. Sharma, S. Dwivedi, K. M. Prabhu, N. Kumar, and M. C. Baruah, “Preliminary studies on serum lipids, apolipoprotein-b and oxidative stress in xanthelasma,” Indian Journal of Clinical Biochemistry, vol. 14, no. 2, pp. 245–248, 1999. View at Scopus
  35. S. B. Sharma, S. Dwivedi, N. Kumar, K. M. Prabhu, and N. Madan, “Studies on oxidative stress, serum iron and iron binding capacity in subjects prone to the risk of coronary artery disease,” Indian Heart Journal, vol. 52, no. 5, pp. 583–586, 2000. View at Scopus
  36. I. Myara, A. Myara, and M. Mangeot, “Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease,” Clinical Chemistry, vol. 30, no. 2, pp. 211–215, 1984. View at Scopus
  37. M. Horoz, M. Aslan, F. F. Bolukbas et al., “Serum prolidase enzyme activity and its relation to histopathological findings in patients with non-alcoholic steatohepatitis,” Journal of Clinical Laboratory Analysis, vol. 24, no. 3, pp. 207–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Palka, A. Surazynski, E. Karna et al., “Prolidase activity disregulation in chronic pancreatitis and pancreatic cancer,” Hepato-Gastroenterology, vol. 49, no. 48, pp. 1699–1703, 2002. View at Scopus
  39. M. Cechowska-Pasko, J. Pałka, and M. Z. Wojtukiewicz, “Enhanced prolidase activity and decreased collagen content in breast cancer tissue,” International Journal of Experimental Pathology, vol. 87, no. 4, pp. 289–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. D. T. Arioz, H. Camuzcuoglu, H. Toy, S. Kurt, H. Celik, and N. Aksoy, “Serum prolidase activity and oxidative status in patients with stage I endometrial cancer,” International Journal of Gynecological Cancer, vol. 19, no. 7, pp. 1244–1247, 2009. View at Publisher · View at Google Scholar · View at Scopus