About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2013 (2013), Article ID 287158, 9 pages
http://dx.doi.org/10.1155/2013/287158
Research Article

A Sequence-Specific Nicking Endonuclease from Streptomyces: Purification, Physical and Catalytic Properties

1Interdisciplinary Program in Genetic Engineering, Kasetsart University, Bangkok 10900, Thailand
2Department of Microbiology, Kasetsart University, Bangkok 10900, Thailand
3Department of Biochemistry, Kasetsart University, Bangkok 10900, Thailand

Received 12 June 2013; Accepted 17 July 2013

Academic Editors: C. F. S. Bonafe and L. S. Chang

Copyright © 2013 Peechapack Somyoonsap et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Pingoud, M. Fuxreiter, V. Pingoud, and W. Wende, “Type II restriction endonucleases: structure and mechanism,” Cellular and Molecular Life Sciences, vol. 62, no. 6, pp. 685–707, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. J. Roberts, T. Vincze, J. P. Posfai, and D. Macelis, “REBASE: restriction enzymes and methyltransferases,” Nucleic Acids Research, vol. 31, no. 1, pp. 418–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. A. Bickle and D. H. Kruger, “Biology of DNA restriction,” Microbiological Reviews, vol. 57, no. 2, pp. 434–450, 1993. View at Scopus
  4. M. Mucke, D. H. Kruger, and M. Reuter, “Diversity of Type II restriction endonucleases that require two DNA recognition sites,” Nucleic Acids Research, vol. 31, no. 21, pp. 6079–6084, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. J. J. Perona, “Type II restriction endonucleases,” Methods, vol. 28, no. 3, pp. 353–364, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Kim, J. C. Grable, R. Love, P. J. Greene, and J. M. Rosenberg, “Refinement of Eco RI endonuclease crystal structure: a revised protein chain tracing,” Science, vol. 249, no. 4974, pp. 1307–1309, 1990. View at Scopus
  7. M. Newman, T. Strzelecka, L. F. Dorner, I. Schildkraut, and A. K. Aggarwal, “Structure of Bam HI endonuclease bound to DNA: partial folding and unfolding on DNA binding,” Science, vol. 269, no. 5224, pp. 656–663, 1995. View at Scopus
  8. A. Pingoud and A. Jeltsch, “Structure and function of type II restriction endonucleases,” Nucleic Acids Research, vol. 29, no. 18, pp. 3705–3727, 2001. View at Scopus
  9. A. J. Bath, S. E. Milsom, N. A. Gormley, and S. E. Halford, “Many type IIs restriction endonucleases interact with two recognition sites before cleaving DNA,” The Journal of Biological Chemistry, vol. 277, no. 6, pp. 4024–4033, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. D. A. Wah, J. A. Hirsch, L. F. Dorner, I. Schildkraut, and A. K. Aggarwal, “Structure of the multimodular endonuclease FokI bound to DNA,” Nature, vol. 388, no. 6637, pp. 97–100, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. É. S. Vanamee, S. Santagata, and A. K. Aggarwal, “FokI requires two specific DNA sites for cleavage,” Journal of Molecular Biology, vol. 309, no. 1, pp. 69–78, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. D. H. Krüger, G. J. Barcak, M. Reuter, and H. O. Smith, “EcoRII can be activated to cleave refractory DNA recognition sites,” Nucleic Acids Research, vol. 16, no. 9, pp. 3997–4008, 1988. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Tamulaitis, G. Sasnauskas, M. Mucke, and V. Siksnys, “Simultaneous binding of three recognition sites is necessary for a concerted plasmid DNA cleavage by EcoRII restriction endonuclease,” Journal of Molecular Biology, vol. 358, no. 2, pp. 406–419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Conrad and M. D. Topal, “DNA and spermidine provide a switch mechanism to regulate the activity of restriction enzyme Nae I,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 24, pp. 9707–9711, 1989. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Bozic, S. Grazulis, V. Siksnys, and R. Huber, “Crystal structure of Citrobacter freundii restriction endonuclease Cfr10I at 2.15 Å resolution,” Journal of Molecular Biology, vol. 255, no. 1, pp. 176–186, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Deibert, S. Grazulis, G. Sasnauskas, V. Siksnys, and R. Huber, “Structure of the tetrameric restriction endonuclease NgoMIV in complex with cleaved DNA,” Nature Structural Biology, vol. 7, no. 9, pp. 792–799, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Zaremba, G. Sasnauskas, C. Urbanke, and V. Siksnys, “Conversion of the tetrameric restriction endonuclease Bse634I into a dimer: oligomeric structure-stability-function correlations,” Journal of Molecular Biology, vol. 348, no. 2, pp. 459–478, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Xu, K. D. Lunnen, and H. Kong, “Engineering a nicking endonuclease N.Alwl by domain swapping,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 23, pp. 12990–12995, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Joneja and X. Huang, “Linear nicking endonuclease-mediated strand-displacement DNA amplification,” Analytical Biochemistry, vol. 414, no. 1, pp. 58–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kataoka, K. Ueda, T. Kudo, T. Seki, and T. Yoshida, “Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces,” FEMS Microbiology Letters, vol. 151, no. 2, pp. 249–255, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Kieser, M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood, Practical Streptomyces Genetics, John Innes Foundation, Norwich, UK, 2000.
  22. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Wright, W. E. Jack, and P. Modrich, “The kinetic mechanism of EcoRI endonuclease,” The Journal of Biological Chemistry, vol. 274, no. 45, pp. 31896–31902, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Hensley, G. Nardone, J. G. Chirikjian, and M. E. Wastney, “The time-resolved kinetics of superhelical DNA cleavage by BamHI restriction endonuclease,” The Journal of Biological Chemistry, vol. 265, no. 25, pp. 15300–15307, 1990. View at Scopus
  25. L. S. Higgins, C. Besnier, and H. Kong, “The nicking endonuclease N.BstNBI is closely related to Type IIs restriction endonucleases Mlyl and Plel,” Nucleic Acids Research, vol. 29, no. 12, pp. 2492–2501, 2001. View at Scopus
  26. L. Li, L. P. Wu, and S. Chandrasegaran, “Functional domains in Fok I restriction endonuclease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 10, pp. 4275–4279, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Modrich and D. Zabel, “EcoRI endonuclease. Physical and catalytic properties of the homogeneous enzyme,” The Journal of Biological Chemistry, vol. 251, no. 19, pp. 5866–5874, 1976. View at Scopus
  28. T. R. Gingeras, L. Greenough, I. Schildkraut, and R. J. Roberts, “Two new restriction endonucleases from Proteus vulgaris,” Nucleic Acids Research, vol. 9, no. 18, pp. 4525–4536, 1981. View at Scopus
  29. T. F. Meyer and K. Geider, “Bacteriophage fd gene II-protein. II. Specific cleavage and relaxation of supercoiled RF from filamentous phages,” The Journal of Biological Chemistry, vol. 254, no. 24, pp. 12642–12646, 1979. View at Scopus
  30. T.-L. Chang, M. G. Kramer, R. A. Ansari, and S. A. Khan, “Role of individual monomers of a dimeric initiator protein in the initiation and termination of plasmid rolling circle replication,” The Journal of Biological Chemistry, vol. 275, no. 18, pp. 13529–13534, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Yokoyama, Y. Matsuzaki, K. Doi, and S. Ogata, “Gene encoding a replication initiator protein and replication origin of conjugative plasmid pSA1.1 of Streptomyces cyaneus ATCC 14921,” FEMS Microbiology Letters, vol. 169, no. 1, pp. 103–109, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. K. G. Au, K. Welsh, and P. Modrich, “Initiation of methyl-directed mismatch repair,” The Journal of Biological Chemistry, vol. 267, no. 17, pp. 12142–12148, 1992. View at Scopus
  33. S. Niu, Q. Li, L. Qu, and W. Wang, “Nicking endonuclease and target recycles signal amplification assisted quantum dots for fluorescence detection of DNA,” Analytica Chimica Acta, vol. 680, no. 1-2, pp. 54–58, 2010. View at Publisher · View at Google Scholar · View at Scopus