About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2013 (2013), Article ID 598251, 7 pages
http://dx.doi.org/10.1155/2013/598251
Research Article

Human Sprouty1 Suppresses Urokinase Receptor-Stimulated Cell Migration and Invasion

Department of Surgery, Cancer Research Laboratories, University of New South Wales, Sydney, NSW 2217, Australia

Received 5 July 2013; Accepted 13 August 2013

Academic Editors: H. Himeno, D. Hoja-Lukowicz, Y. Ihara, T. Kietzmann, and F. Lesage

Copyright © 2013 Ahmed H. Mekkawy and David L. Morris. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Mekkawy, D. L. Morris, and M. H. Pourgholami, “Urokinase plasminogen activator system as a potential target for cancer therapy,” Future Oncology, vol. 5, no. 9, pp. 1487–1499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. V. V. Stepanova and V. A. Tkachuk, “Urokinase as a multidomain protein and polyfunctional cell regulator,” Biochemistry, vol. 67, no. 1, pp. 109–118, 2002. View at Scopus
  3. P. Chaurasia, J. A. Aguirre-Ghiso, O. D. Liang, H. Gardsvoll, M. Ploug, and L. Ossowski, “A region in urokinase plasminogen receptor domain III controlling a functional association with α5β1 integrin and tumor growth,” Journal of Biological Chemistry, vol. 281, no. 21, pp. 14852–14863, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. C. E. De Bock, Z. Lin, A. H. Mekkawy, J. A. Byrne, and Y. Wang, “Interaction between urokinase receptor and heat shock protein MRJ enhances cell adhesion,” International Journal of Oncology, vol. 36, no. 5, pp. 1155–1163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. M. Kanse, T. Chavakis, N. Al-Fakhri, K. Hersemeyer, D. Monard, and K. T. Preissner, “Reciprocal regulation of urokinase receptor (CD87)-mediated cell adhesion by plasminogen activator inhibitor-1 and protease nexin-1,” Journal of Cell Science, vol. 117, no. 3, pp. 477–485, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Casci, J. Vinós, and M. Freeman, “Sprouty, an intracellular inhibitor of Ras signaling,” Cell, vol. 96, no. 5, pp. 655–665, 1999. View at Scopus
  7. J. D. Tefft, L. Matt, S. Smith et al., “Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis,” Current Biology, vol. 9, no. 4, pp. 219–222, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. T. L. Lo, P. Yusoff, C. W. Fong et al., “The Ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer,” Cancer Research, vol. 64, no. 17, pp. 6127–6136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Gross, D. J. Morrison, D. P. Hyink et al., “The receptor tyrosine kinase regulator sproutyl is a target of the tumor suppressor WT1 and important for kidney development,” Journal of Biological Chemistry, vol. 278, no. 42, pp. 41420–41430, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Schutzman and G. R. Martin, “Sprouty genes function in suppression of prostate tumorigenesis,” Proceedings of the National Academy of Sciences of USA, vol. 109, no. 49, pp. 20023–20028, 2012.
  11. S. Fritzsche, M. Kenzelmann, M. J. Hoffmann et al., “Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma,” Endocrine-Related Cancer, vol. 13, no. 3, pp. 839–849, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Kwabi-Addo, J. Wang, H. Erdem et al., “The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer,” Cancer Research, vol. 64, no. 14, pp. 4728–4735, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. B. S. Taylor, N. Schultz, H. Hieronymus et al., “Integrative genomic profiling of human prostate cancer,” Cancer Cell, vol. 18, no. 1, pp. 11–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Schaaf, M. Hamdi, D. Zwijnenburg et al., “Silencing of SPRY1 triggers complete regression of rhabdomyosarcoma tumors carrying a mutated RAS gene,” Cancer Research, vol. 70, no. 2, pp. 762–771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. H. Mekkawy, C. E. De Bock, Z. Lin, D. L. Morris, Y. Wang, and M. H. Pourgholami, “Novel protein interactors of urokinase-type plasminogen activator receptor,” Biochemical and Biophysical Research Communications, vol. 399, no. 4, pp. 738–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. H. Mekkawy, D. L. Morris, and M. H. Pourgholami, “HAX1 augments cell proliferation, migration, adhesion, and invasion induced by urokinase-type plasminogen activator receptor,” Journal of Oncology, vol. 2012, Article ID 950749, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Carlin, T. J. Resink, M. Tamm, and M. Roth, “Urokinase signal transduction and its role in cell migration,” FASEB Journal, vol. 19, no. 2, pp. 195–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Stahl and B. M. Mueller, “Binding of urokinase to its receptor promotes migration and invasion of human melanoma cells in vitro,” Cancer Research, vol. 54, no. 11, pp. 3066–3071, 1994. View at Scopus
  19. H. T. Myohanen, R. W. Stephens, K. Hedman et al., “Distribution and lateral mobility of the urokinase-receptor complex at the cell surface,” Journal of Histochemistry and Cytochemistry, vol. 41, no. 9, pp. 1291–1301, 1993. View at Scopus
  20. P. Llinas, M. H. Le Du, H. Gårdswoll et al., “Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide,” EMBO Journal, vol. 24, no. 9, pp. 1655–1663, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Bohuslav, V. Hořejší, C. Hansmann et al., “Urokinase plasminogen activator receptor, β2-integrins, and Src-kinases within a single receptor complex of human monocytes,” Journal of Experimental Medicine, vol. 181, no. 4, pp. 1381–1390, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Wei, M. Lukashev, D. I. Simon et al., “Regulation of integrin function by the urokinase receptor,” Science, vol. 273, no. 5281, pp. 1551–1555, 1996. View at Scopus
  23. W. Xue, I. Mizukami, R. F. Todd III, and H. R. Petty, “Urokinase-type plasminogen activator receptors associate with β1 and β3 integrins of fibrosarcoma cells: dependence on extracellular matrix components,” Cancer Research, vol. 57, no. 9, pp. 1682–1689, 1997. View at Scopus
  24. M. Resnati, I. Pallavicini, R. Daverio, N. Sidenius, P. Bonini, and F. Blasi, “Specific immunofluorimetric assay detecting the chemotactic epitope of the urokinase receptor (uPAR),” Journal of Immunological Methods, vol. 308, no. 1-2, pp. 192–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Liu, J. A. Aguirre Ghiso, Y. Estrada, and L. Ossowski, “EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma,” Cancer Cell, vol. 1, no. 5, pp. 445–457, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Mason, D. J. Morrison, B. Bassit et al., “Tyrosine phosphorylation of sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop,” Molecular Biology of the Cell, vol. 15, no. 5, pp. 2176–2188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M.-A. Impagnatiello, S. Weitzer, G. Gannon, A. Compagni, M. Cotten, and G. Christofori, “Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells,” Journal of Cell Biology, vol. 152, no. 5, pp. 1087–1098, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Hanafusa, S. Torii, T. Yasunaga, and E. Nishida, “Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway,” Nature Cell Biology, vol. 4, no. 11, pp. 850–858, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Schwab, J. M. Gavlik, T. Beichler et al., “Expression of the urokinase-type plasminogen activator receptor in human articular chondrocytes: association with caveolin and β1-integrin,” Histochemistry and Cell Biology, vol. 115, no. 4, pp. 317–323, 2001. View at Scopus
  30. A. Stahl and B. M. Mueller, “The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae,” Journal of Cell Biology, vol. 129, no. 2, pp. 335–344, 1995. View at Scopus
  31. W. Ying, X. Yang, L. Qiumei, J. A. Wilkins, and H. A. Chapman, “A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling,” Journal of Cell Biology, vol. 144, no. 6, pp. 1285–1294, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. C.-H. Tang, M. L. Hill, A. N. Brumwell, H. A. Chapman, and Y. Wei, “Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with β1 integrins,” Journal of Cell Science, vol. 121, no. 22, pp. 3747–3758, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Jo, K. S. Thomas, D. M. O'Donnell, and S. L. Gonias, “Epidermal growth factor receptor-dependent and -independent cell-signaling pathways originating from the urokinase receptor,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1642–1646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. K. Repertinger, E. Campagnaro, J. Fuhrman, T. El-Abaseri, S. H. Yuspa, and L. A. Hansen, “EGFR enhances early healing after cutaneous incisional wounding,” Journal of Investigative Dermatology, vol. 123, no. 5, pp. 982–989, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Mamoune, J. Kassis, S. Kharait et al., “DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling,” Experimental Cell Research, vol. 299, no. 1, pp. 91–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Festuccia, A. Angelucci, G. L. Gravina et al., “Epidermal growth factor modulates prostate cancer cell invasiveness regulating urokinase-type plasminogen activator activity. EGF-receptor inhibition may prevent tumor cell dissemination,” Thrombosis and Haemostasis, vol. 93, no. 5, pp. 964–975, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Shiratsuchi, H. Ishibashi, and K. Shirasuna, “Inhibition of epidermal growth factor-induced invasion by dexamethasone and AP-1 decoy in human squamous cell carcinoma cell lines,” Journal of Cellular Physiology, vol. 193, no. 3, pp. 340–348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Ünlü and R. E. Leake, “The effect of EGFR-related tyrosine kinase activity inhibition on the growth and invasion mechanisms of prostate carcinoma cell lines,” International Journal of Biological Markers, vol. 18, no. 2, pp. 139–146, 2003. View at Scopus
  39. G. H. Mahabeleshwar, R. Das, and G. C. Kundu, “Tyrosine kinase, p56lck-induced cell motility, and urokinase-type plasminogen activator secretion involve activation of epidermal growth factor receptor/extracellular signal regulated kinase pathways,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 9733–9742, 2004. View at Publisher · View at Google Scholar · View at Scopus