About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2013 (2013), Article ID 637897, 7 pages
http://dx.doi.org/10.1155/2013/637897
Research Article

Transsulfuration Is a Significant Source of Sulfur for Glutathione Production in Human Mammary Epithelial Cells

1Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV 25755-0003, USA
2Department of Pharmacology, Physiology & Toxicology, Marshall University Joan C. Edwards School of Medicine, One John Marshall Drive, Huntington, WV 25755-0003, USA
3Department of Anatomy and Pathology, Marshall University Joan C. Edwards School of Medicine, One John Marshall Drive, Huntington, WV 25755-0003, USA

Received 22 January 2013; Accepted 16 February 2013

Academic Editors: A.-M. Lambeir and B. Lenarcic

Copyright © 2013 Andrea D. Belalcázar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. Lu, M. L. Martinez-Chantar, and J. M. Mato, “Methionine adenosyltransferase and S-adenosylmethionine in alcoholic liver disease,” Journal of Gastroenterology and Hepatology, vol. 21, supplement 3, pp. S61–S64, 2006.
  2. S. Ratnam, K. N. Maclean, R. L. Jacobs, M. E. Brosnan, J. P. Kraus, and J. T. Brosnan, “Hormonal regulation of cystathionine β-synthase expression in liver,” Journal of Biological Chemistry, vol. 277, no. 45, pp. 42912–42918, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Banerjee, R. Evande, O. Kabil, S. Ojha, and S. Taoka, “Reaction mechanism and regulation of cystathionine beta-synthase,” Biochimica et Biophysica Acta, vol. 1647, no. 1-2, pp. 30–35, 2003.
  4. S. J. James, S. Melnyk, S. Jernigan et al., “Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism,” American Journal of Medical Genetics B, vol. 141, no. 8, pp. 947–956, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Jill James, S. Melnyk, S. Jernigan, A. Hubanks, S. Rose, and D. W. Gaylor, “Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism,” Journal of Autism and Developmental Disorders, vol. 38, no. 10, pp. 1966–1975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Geier, J. K. Kern, C. R. Garver, J. B. Adams, T. Audhya, and M. R. Geier, “A prospective study of transsulfuration biomarkers in autistic disorders,” Neurochemical Research, vol. 34, no. 2, pp. 386–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Geier, J. K. Kern, C. R. Garver et al., “Biomarkers of environmental toxicity and susceptibility in autism,” Journal of the Neurological Sciences, vol. 280, no. 1-2, pp. 101–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. James, S. Melnyk, G. Fuchs et al., “Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 425–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Horowitz, E. B. Rypins, and J. M. Henderson, “Evidence for impairment of transsulfuration pathway in cirrhosis,” Gastroenterology, vol. 81, no. 4, pp. 668–675, 1981. View at Scopus
  10. C. Loguercio, G. Nardi, G. Prota, C. Del Vecchio Blanco, and M. Coltorti, “Decrease of total, glutathione and cysteine SH in non-alcoholic cirrhosis,” Italian Journal of Gastroenterology, vol. 22, no. 1, pp. 13–15, 1990. View at Scopus
  11. G. Marchesini, E. Bugianesi, G. Bianchi et al., “Defective methionine metabolism in cirrhosis: relation to severity of liver disease,” Hepatology, vol. 16, no. 1, pp. 149–155, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. M. P. Look, R. Riezler, C. Reichel et al., “Is the increase in serum cystathionine levels in patients with liver cirrhosis a consequence of impaired homocysteine transsulfuration at the level of γ-cystathionase?” Scandinavian Journal of Gastroenterology, vol. 35, no. 8, pp. 866–872, 2000. View at Scopus
  13. G. Bianchi, M. Brizi, B. Rossi, M. Ronchi, G. Grossi, and G. Marchesini, “Synthesis of glutathione in response to methionine load in control subjects and in patients with cirrhosis,” Metabolism: Clinical and Experimental, vol. 49, no. 11, pp. 1434–1439, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Robinson, E. Mayer, and D. W. Jacobsen, “Homocysteine and coronary artery disease,” Cleveland Clinic Journal of Medicine, vol. 61, no. 6, pp. 438–450, 1994. View at Scopus
  15. N. P. B. Dudman, X. W. Guo, R. B. Gordon, P. A. Dawson, and D. E. L. Wilcken, “Human homocysteine catabolism: three major pathways and their relevance to development of arterial occlusive disease,” Journal of Nutrition, vol. 126, supplement 4, pp. 1295S–1300S, 1996. View at Scopus
  16. P. Verhoef, M. J. Stampfer, J. E. Buring et al., “Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate,” American Journal of Epidemiology, vol. 143, no. 9, pp. 845–859, 1996. View at Scopus
  17. S. M. Saw, “Homocysteine and atherosclerotic disease: the epidemiologic evidence,” Annals of the Academy of Medicine Singapore, vol. 28, no. 4, pp. 565–568, 1999. View at Scopus
  18. P. Durand, M. Prost, N. Loreau, S. Lussier-Cacan, and D. Blache, “Impaired homocysteine metabolism and atherothrombotic disease,” Laboratory Investigation, vol. 81, no. 5, pp. 645–672, 2001. View at Scopus
  19. Y. Ingenbleek, D. Barclay, and H. Dirren, “Nutritional significance of alterations in serum amino acid patterns in goitrous patients,” American Journal of Clinical Nutrition, vol. 43, no. 2, pp. 310–319, 1986. View at Scopus
  20. G. Palareti, S. Salardi, and S. Piazzi, “Blood coagulation changes in homocystinuria: effects of pyridoxine and other specific therapy,” Journal of Pediatrics, vol. 109, no. 6, pp. 1001–1006, 1986. View at Scopus
  21. G. Palareti and S. Coccheri, “Lowered antithrombin III activity and other clotting changes in homocystinuria: effects of a pyridoxine-folate regimen,” Haemostasis, vol. 19, supplement 1, pp. 24–28, 1989. View at Scopus
  22. M. M. Eldibany and J. A. Caprini, “Hyperhomocysteinemia and thrombosis: an overview,” Archives of Pathology and Laboratory Medicine, vol. 131, no. 6, pp. 872–884, 2007. View at Scopus
  23. S. Garg, V. Vitvitsky, H. E. Gendelman, and R. Banerjee, “Monocyte differentiation, activation, and mycobacterial killing are linked to transsulfuration-dependent redox metabolism,” Journal of Biological Chemistry, vol. 281, no. 50, pp. 38712–38720, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Wisniewski, J. A. Sturman, and E. Devine, “Cystathionine disappearance with neuronal loss: a possible neuronal marker,” Neuropediatrics, vol. 16, no. 3, pp. 126–130, 1985. View at Scopus
  25. F. Tchantchou, “Homocysteine increase folate oxidative brain homocysteine metabolism and various consequences of folate deficiency,” Journal of Alzheimer's Disease, vol. 9, no. 4, pp. 421–427, 2006. View at Scopus
  26. N. Vatanavicharn, B. D. Pressman, and W. R. Wilcox, “Reversible leukoencephalopathy with acute neurological deterioration and permanent residua in classical homocystinuria: a case report,” Journal of Inherited Metabolic Disease, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. H. Rahman, A. R. Srinivasan, and A. Nicolaou, “Transsulfuration pathway defects and increased glutathione degradation in severe acute pancreatitis,” Digestive Diseases and Sciences, vol. 54, no. 3, pp. 675–682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Vitvitsky, M. Thomas, A. Ghorpade, H. E. Gendelman, and R. Banerjee, “A functional transsulfuration pathway in the brain links to glutathione homeostasis,” Journal of Biological Chemistry, vol. 281, no. 47, pp. 35785–35793, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Sturman, N. G. Beratis, L. Guarini, and G. E. Gaull, “Transsulfuration by human long term lymphoid lines. Normal and cystathionase-deficient cells,” Journal of Biological Chemistry, vol. 255, no. 10, pp. 4763–4765, 1980. View at Scopus
  30. S. H. Mudd, J. D. Finkelstein, F. Irreverre, and L. Laster, “Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway,” Journal of Biological Chemistry, vol. 240, no. 11, pp. 4382–4392, 1965. View at Scopus
  31. A. Ronco, E. De Stefani, M. Mendilaharsu, and H. Deneo-Pellegrini, “Meat, fat and risk of breast cancer: a case-control study from Uruguay,” International Journal of Cancer, vol. 65, no. 3, pp. 328–331, 1996.
  32. E. F. Taylor, V. J. Burley, D. C. Greenwood, and J. E. Cade, “Meat consumption and risk of breast cancer in the UK Women's Cohort Study,” British Journal of Cancer, vol. 96, no. 7, pp. 1139–1146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Cho, W. Y. Chen, D. J. Hunter et al., “Red meat intake and risk of breast cancer among premenopausal women,” Archives of Internal Medicine, vol. 166, no. 20, pp. 2253–2259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Linos, W. C. Willett, E. Cho, G. Colditz, and L. A. Frazier, “Red meat consumption during adolescence among premenopausal women and risk of breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 8, pp. 2146–2151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. E. Steck, M. M. Gaudet, S. M. Eng et al., “Cooked meat and risk of breast cancer—lifetime versus recent dietary intake,” Epidemiology, vol. 18, no. 3, pp. 373–382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. G. C. Kabat and T. E. Rohan, “Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis,” Cancer Causes and Control, vol. 18, no. 10, pp. 1047–1053, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Takkunen and R. Seppanen, “Iron deficiency and dietary factors in Finland,” American Journal of Clinical Nutrition, vol. 28, no. 10, pp. 1141–1147, 1975. View at Scopus
  38. E. Bjorn Rasmussen, L. Hallberg, B. Isaksson, and B. Arvidsson, “Food iron absorption in man. Applications of the two pool extrinsic tag method to measure heme and nonheme iron absorption from the whole diet,” Journal of Clinical Investigation, vol. 53, no. 1, pp. 247–255, 1974. View at Scopus
  39. R. G. Dumitrescu and P. G. Shields, “The etiology of alcohol-induced breast cancer,” Alcohol, vol. 35, no. 3, pp. 213–225, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. V. Bagnardi, M. Blangiardo, C. L. Vecchia, and G. Corrao, “A meta-analysis of alcohol drinking and cancer risk,” British Journal of Cancer, vol. 85, no. 11, pp. 1700–1705, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. Collaborative Group on Hormonal Factors in Breast Cancer, “Alcohol, tobacco and breast cancer—collaborative reanalysis of individual data from 53 epidemiological studies, including 58 515 women with breast cancer and 95 067 women without the disease,” British Journal of Cancer, vol. 87, no. 11, pp. 1234–1245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Suzuki, N. Orsini, L. Mignone, S. Saji, and A. Wolk, “Alcohol intake and risk of breast cancer defined by estrogen and progesterone receptor status—ameta-analysis of epidemiological studies,” International Journal of Cancer, vol. 122, no. 8, pp. 1832–1841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Kamencic, A. Lyon, P. G. Paterson, and B. H. J. Juurlink, “Monochlorobimane fluorometric method to measure tissue glutathione,” Analytical Biochemistry, vol. 286, no. 1, pp. 35–37, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. J. C. Fernandez-Checa and N. Kaplowitz, “The use of monochlorobimane to determine hepatic GSH levels and synthesis,” Analytical Biochemistry, vol. 190, no. 2, pp. 212–219, 1990. View at Scopus
  45. O. W. Griffith, “Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine,” Analytical Biochemistry, vol. 106, no. 1, pp. 207–212, 1980. View at Scopus
  46. M. E. Anderson, “Determination of glutathione and glutathione disulfide in biological samples,” Methods in Enzymology, vol. 113, pp. 548–555, 1985. View at Scopus
  47. M. Valentovic, M. K. Meadows, R. C. Harmon, J. G. Ball, S. K. Hong, and G. O. Rankin, “2-Amino-5-chlorophenol toxicity in renal cortical slices from Fischer 344 rats: effect of antioxidants and sulfhydryl agents,” Toxicology and Applied Pharmacology, vol. 161, no. 1, pp. 1–9, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. M. A. Valentovic, J. G. Ball, H. Sun, and G. O. Rankin, “Characterization of 2-amino-4,5-dichlorophenol (2A45CP) in vitro toxicity in renal cortical slices from male Fischer 344 rats,” Toxicology, vol. 172, no. 2, pp. 113–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Valentovic, M. Terneus, R. C. Harmon, and A. B. Carpenter, “S-Adenosylmethionine (SAMe) attenuates acetaminophen hepatotoxicity in C57BL/6 mice,” Toxicology Letters, vol. 154, no. 3, pp. 165–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. R. C. Harmon, M. V. Terneus, K. K. Kiningham, and M. Valentovic, “Time-dependent effect of p-Aminophenol (PAP) toxicity in renal slices and development of oxidative stress,” Toxicology and Applied Pharmacology, vol. 209, no. 1, pp. 86–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. R. C. Harmon, K. K. Kiningham, and M. A. Valentovic, “Pyruvate reduces 4-aminophenol in vitro toxicity,” Toxicology and Applied Pharmacology, vol. 213, no. 2, pp. 179–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. M. V. Terneus, K. K. Kiningham, A. B. Carpenter, S. B. Sullivan, and M. A. Valentovic, “Comparison of S-adenosyl-L-methionine and N-acetylcysteine protective effects on acetaminophen hepatic toxicity,” Journal of Pharmacology and Experimental Therapeutics, vol. 320, no. 1, pp. 99–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  54. L. Bao, Č. Vlček, V. Pačes, and J. P. Kraus, “Identification and tissue distribution of human cystathionine β-synthase mRNA isoforms,” Archives of Biochemistry and Biophysics, vol. 350, no. 1, pp. 95–103, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Lertratanangkoon, C. J. Wu, N. Savaraj, and M. L. Thomas, “Alterations of DNA methylation by glutathione depletion,” Cancer Letters, vol. 120, no. 2, pp. 149–156, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Mosharov, M. R. Cranford, and R. Banerjee, “The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes,” Biochemistry, vol. 39, no. 42, pp. 13005–13011, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. R. C. Bakker and D. P. M. Brandjes, “Hyperhomocysteinaemia and associated disease,” Pharmacy World and Science, vol. 19, no. 3, pp. 126–132, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. C. P. Lima, S. R. Davis, A. D. Mackey, J. B. Scheer, J. Williamson, and J. F. Gregory, “Vitamin B-6 deficiency suppresses the hepatic transsulfuration pathway but increases glutathione concentration in rats fed AIN-76A or AIN-93G diets,” Journal of Nutrition, vol. 136, no. 8, pp. 2141–2147, 2006. View at Scopus
  59. B. Tang, A. Mustafa, S. Gupta, S. Melnyk, S. J. James, and W. D. Kruger, “Methionine-deficient diet induces post-transcriptional downregulation of cystathionine β-synthase,” Nutrition, vol. 26, no. 11-12, pp. 1170–1175, 2010. View at Publisher · View at Google Scholar · View at Scopus