About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2013 (2013), Article ID 762412, 10 pages
http://dx.doi.org/10.1155/2013/762412
Review Article

Role of Elicitors in Inducing Resistance in Plants against Pathogen Infection: A Review

Department of Biochemistry, College of Basic Science and Humanities (COBS&H), Punjab Agricultural University, Ludhiana 141 001, India

Received 5 December 2012; Accepted 26 December 2012

Academic Editors: D. Hoja-Lukowicz, A.-M. Lambeir, and A. Matsuura

Copyright © 2013 Meenakshi Thakur and Baldev Singh Sohal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. G. El-Gamal, F. Abd-El-Kareem, Y. O. Fotouh, and N. S. El Mougy, “Induction of systemic resistance in potato plants against late and early blight diseases using chemical inducers under greenhouse and field conditions,” Research Journal of Agriculture and Biological Sciences, vol. 3, no. 2, pp. 73–81, 2007.
  2. A. Garcia-Brugger, O. Lamotte, E. Vandelle et al., “Early signaling events induced by elicitors of plant defenses,” Molecular Plant-Microbe Interactions, vol. 19, no. 7, pp. 711–724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Gómez-Vásquez, R. Day, H. Buschmann, S. Randles, J. R. Beeching, and R. M. Cooper, “Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor-challenged cassava (Manihot esculenta) suspension cells and leaves,” Annals of Botany, vol. 94, no. 1, pp. 87–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. L. C. Van Loon and E. A. Van Strien, “The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins,” Physiological and Molecular Plant Pathology, vol. 55, no. 2, pp. 85–97, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. G. N. Agrios, Plant Pathology, Academic Press, San Diego, Calif, USA, 3rd edition, 1988.
  6. M. Heil and R. M. Bostock, “Induced systemic resistance (ISR) against pathogens in the context of induced plant defences,” Annals of Botany, vol. 89, no. 5, pp. 503–512, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Heath, “Hypersensitive response-related death,” Plant Molecular Biology, vol. 44, no. 3, pp. 321–334, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. I. E. Somssica and K. Hahlbrock, “Pathogen defence in plants—a paradigm of biological complexity,” Trends in Plant Science, vol. 3, no. 3, pp. 86–90, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. P. J. G. M. De Wit, “Fungal avirulence genes and plant resistance genes: unraveling the molecular basis of gene-for-gene interactions,” Advances in Botanical Research, vol. 21, pp. 147–185, 1995. View at Scopus
  10. E. C. Stakman, “Relation between Puccinia graminis and plants highly resistant to its attack,” Agricultural Research, vol. 4, pp. 193–299, 1915.
  11. J. B. Morel and J. L. Dangl, “The hypersensitive response and the induction of cell death in plants,” Cell Death and Differentiation, vol. 4, no. 8, pp. 671–683, 1997. View at Scopus
  12. J. Kumar, R. Hückelhoven, U. Beckhove, S. Nagarajan, and K. H. Kogel, “A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins,” Phytopathology, vol. 91, no. 2, pp. 127–133, 2001. View at Scopus
  13. N. Doke, “Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components,” Physiological Plant Pathology, vol. 23, no. 3, pp. 345–357, 1983. View at Scopus
  14. C. J. Baker, N. R. O'Neill, L. D. Keepler, and E. W. Orlandi, “Early responses during plant- bacteria interactions in tobacoo cell suspensions,” Phytopathology, vol. 81, pp. 1504–1507, 1991. View at Publisher · View at Google Scholar
  15. C. Lamb and R. A. Dixon, “The oxidative burst in plant disease resistance,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 48, pp. 251–275, 1997. View at Scopus
  16. A. Levine, R. Tenhaken, R. Dixon, and C. Lamb, “H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response,” Cell, vol. 79, no. 4, pp. 583–593, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Chandra, G. B. Martin, and P. S. Low, “The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 23, pp. 13393–13397, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Conrath, H. Silva, and D. F. Klessig, “Protein dephosphorylation mediates salicylic acid-induced expression of PR-1 genes in tobacco,” Plant Journal, vol. 11, no. 4, pp. 747–757, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. K. E. Hammond-Kosack and J. D. G. Jones, “Resistance gene-dependent plant defense responses,” The Plant Cell, vol. 8, no. 10, pp. 1773–1791, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. Mehdy, “Active oxygen species in plant defense against pathogens,” Plant Physiology, vol. 105, no. 2, pp. 467–472, 1994. View at Scopus
  21. P. Wojtaszek, “Oxidative burst: an early plant response to pathogen infection,” Biochemical Journal, vol. 322, no. 3, pp. 681–692, 1997. View at Scopus
  22. J. J. Grant and G. J. Loake, “Role of reactive oxygen intermediates and cognate redox signaling in disease resistance,” Plant Physiology, vol. 124, no. 1, pp. 21–30, 2000. View at Scopus
  23. K. J. Doughty, G. A. Kiddle, B. J. Pye, R. M. Wallsgrove, and J. A. Pickett, “Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate,” Phytochemistry, vol. 38, no. 2, pp. 347–350, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Görlach, S. Volrath, G. Knauf-Beiter et al., “Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat,” The Plant Cell, vol. 8, no. 4, pp. 629–643, 1996. View at Scopus
  25. K. Shirasu, H. Nakajima, V. K. Rajasekhar, R. A. Dixon, and C. Lamb, “Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms,” The Plant Cell, vol. 9, no. 2, pp. 261–270, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Burketová, M. Šindelářová, and L. Šindelář, “Benzothiadiazole as an inducer of β-1,3-glucanase and chitinase isozymes in sugar beet,” Biologia Plantarum, vol. 42, no. 2, pp. 279–287, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. J. F. Godard, S. Ziadi, C. Monot, D. Le Corre, and D. Silué, “Benzothiadiazole (BTH) induces resistance in cauliflower (Brassica oleracea var botrytis) to downy mildew of crucifers caused by Peronospora parasitica,” Crop Protection, vol. 18, no. 6, pp. 397–405, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Lee, H. Choi, S. Suh et al., “Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis,” Plant Physiology, vol. 121, no. 1, pp. 147–152, 1999. View at Scopus
  29. M. K. Srivastava and U. N. Dwivedi, “Delayed ripening of banana fruit by salicylic acid,” Plant Science, vol. 158, no. 1-2, pp. 87–96, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Garcia-Magallon, A. Rojas-Duarte, A. Benavides-Mendoza, F. Ramírez-Godina, and L. Bañuelos-Herrera, “Aplicación del ácido benzoico en forma foliar al cultivo de Lilium cv. Dreamland,” in Memoria del XIX Congreso Nacional de Fitogenética, p. 72, Sociedad Mexicana de Fitogenética, Saltillo, Mexico, 2002.
  31. C. K. Ding, C. Y. Wang, K. C. Gross, and D. L. Smith, “Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit,” Planta, vol. 214, no. 6, pp. 895–901, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Sauerborn, H. Buschmann, K. G. Ghiasi, and K. H. Kogel, “Benzothiadiazole activates resistance in sunflower (Helianthus annuus) to the root-parasitic weed Orobanche cumana,” Phytopathology, vol. 92, no. 1, pp. 59–64, 2002. View at Scopus
  33. I. V. Maksimov, E. A. Cherepanova, and R. M. Khairullin, “‘Chitin-specific’ peroxidases in plants,” Biochemistry, vol. 68, no. 1, pp. 111–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Ortega-Ortíz, A. Benavides-Mendoza, A. Flores-Olivas, and A. Ledezma-Pérez, “Use of the interpolyelectrolyte complexes of poly(acrylic acid)-chitosan as inductors of tolerance against pathogenic fungi in tomato (Lycopersicon esculentum Mill. var. Floradade),” Macromolecular Bioscience, vol. 3, no. 10, pp. 566–570, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Peng, X. Deng, J. Huang, S. Jia, X. Miao, and Y. Huang, “Role of salicylic acid in tomato defense against cotton bollworm, Helicoverpa armigera Hubner,” Zeitschrift fur Naturforschung, vol. 59, no. 11-12, pp. 856–862, 2004. View at Scopus
  36. R. Katoch, “Effect of elicitors and E. polygoni inoculation on the activity of phenol metabolizing enzymes in garden pea (Pisum sativum L.),” Indian Journal of Agricultural Biochemistry, vol. 18, no. 2, pp. 87–91, 2005. View at Scopus
  37. S. Guleria and A. Kumar, “Qualitative profiling of phenols and extracellular proteins induced in mustard (Brassica juncea) in response to benzothiadiazole treatment,” Journal of Cell Molecular Biology, vol. 5, pp. 51–56, 2006.
  38. H. Ortega-Ortiz, A. Benavides-Mendoza, R. Mendoza-Villarreal, H. Ramirez-Rodriguez, and K. D. A. Romenus, “Enzymatic activity in tomato fruits as a response to chemical elicitors,” Journal of Mexican Chemical Society, vol. 51, no. 3, pp. 141–144, 2007.
  39. V. Tavallali, S. Karimi, S. Mohammadi, and S. Hojati, “Effects of β-aminobutyric acid on the induction of resistance to Penicillium italicum,” World Applied Science Journal, vol. 5, no. 3, pp. 345–351, 2008.
  40. E. Nafie and M. M. Mazen, “Chemical-induced resistance against brown stem rot in soybean: the effect of benzothiadiazole,” Journal of Applied Science Research, vol. 4, no. 12, pp. 2046–2064, 2008.
  41. R. Vimala and M. Suriachandraselvan, “Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid,” Journal of Biopesticides, vol. 2, no. 1, pp. 111–114, 2009.
  42. P. Kaur, N. Ghai, and M. K. Sangha, “Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species,” African Journal of Biotechnology, vol. 8, no. 4, pp. 619–625, 2009. View at Scopus
  43. N. Kazemi, R. A. Khavari-Nejad, H. Fahimi, S. Saadatmand, and T. Nejad-Sattari, “Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress,” Scientia Horticulturae, vol. 126, pp. 402–407, 2010. View at Publisher · View at Google Scholar
  44. S. Mandal, “Induction of phenolics, lignin and key defense enzymes in eggplant (Solanum melongena L.) roots in response to elicitors,” African Journal of Biotechnology, vol. 9, no. 47, pp. 8038–8047, 2010. View at Scopus
  45. S. Sharma and B. S. Sohal, “Foliar spray of benzothiadiazole and salicylic acid on Brassica juncea var. Rlm619 to combat Alternaria blight in field trials,” Crop Improvement, vol. 31, no. 1, pp. 87–92, 2010.
  46. S. Farouk and M. A. Osman, “The effect of plant defense elicitors on common bean (Phaseolus vulgaris L.) growth and yield in absence or presence of spider mite (Tetranychus urticae Koch) infestation,” Journal of Stress Physiology and Biochemistry, vol. 7, no. 3, pp. 5–22, 2011.
  47. S. Pérez-Balibrea, D. A. Moreno, and C. García-Viguera, “Improving the phytochemical composition of broccoli sprouts by elicitation,” Food Chemistry, vol. 129, no. 1, pp. 35–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. M. F. Abdel-Monaim, M. E. Ismail, and K. M. Morsy, “Induction of systematic resistance in soybean plants against Fusarium wilt disease by seed treatment with benzothiadiazole and humic acid,” Notulae Scientia Biologicae, vol. 3, no. 2, pp. 80–89, 2011.
  49. M. Montesano, G. Brader, and E. T. Palva, “Pathogen derived elicitors: searching for receptors in plants,” Molecular Plant Pathology, vol. 4, no. 1, pp. 73–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Shibuya and E. Minami, “Oligosaccharide signalling for defence responses in plant,” Physiological and Molecular Plant Pathology, vol. 59, no. 5, pp. 223–233, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. J. E. Leach and F. F. White, “Bacterial avirulence genes,” Annual Review of Phytopathology, vol. 34, pp. 153–179, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Gómez-Gómez and T. Boller, “FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis,” Molecular Cell, vol. 5, no. 6, pp. 1003–1011, 2000. View at Scopus
  53. Y. Tada, S. Hata, Y. Takata, H. Nakayashiki, Y. Tosa, and S. Mayama, “Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors,” Molecular Plant-Microbe Interactions, vol. 14, no. 4, pp. 477–486, 2001. View at Scopus
  54. A. P. Kloek, M. L. Verbsky, S. B. Sharma et al., “Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms,” Plant Journal, vol. 26, no. 5, pp. 509–522, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Pnueli, H. Liang, M. Rozenberg, and R. Mittler, “Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants,” Plant Journal, vol. 34, no. 2, pp. 187–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Kuniak and M. Sklodowska, “Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea,” Plant Science, vol. 160, no. 4, pp. 723–731, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. U. H. Cho and N. H. Seo, “Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation,” Plant Science, vol. 168, no. 1, pp. 113–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. J. A. Ryals, U. H. Neuenschwander, M. G. Willits, A. Molina, H. Y. Steiner, and M. D. Hunt, “Systemic acquired resistance,” The Plant Cell, vol. 8, no. 10, pp. 1809–1819, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Ebel and E. G. Cosio, “Elicitors of plant defense responses,” International Review of Cytology, vol. 148, pp. 1–36, 1994. View at Scopus
  60. M. G. Hahn, “Microbial elicitors and their receptors in plants,” Annual Review of Phytopathology, vol. 34, pp. 387–412, 1996. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Nürnberger, “Signal perception in plant pathogen defense,” Cellular and Molecular Life Science, vol. 55, pp. 167–182, 1999. View at Publisher · View at Google Scholar
  62. T. Boller, “Chemoperception of microbial signals in plant cells,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 46, pp. 189–214, 1995. View at Scopus
  63. J. Cohn, G. Sessa, and G. B. Martin, “Innate immunity in plants,” Current Opinion in Immunology, vol. 13, no. 1, pp. 55–62, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Luderer and M. H. A. J. Joosten, “Avirulence proteins of plant pathogens: determinants of victory and defeat,” Molecular Plant Pathology, vol. 2, no. 6, pp. 355–364, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Nimchuk, L. Rohmer, J. H. Chang, and J. L. Dangl, “Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen,” Current Opinion in Plant Biology, vol. 4, no. 4, pp. 288–294, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Nürnberger and D. Scheel, “Signal transmission in the plant immune response,” Trends in Plant Science, vol. 6, pp. 372–379, 2001. View at Publisher · View at Google Scholar
  67. B. M. Tyler, “Molecular basis of recognition between Phytophthora pathogens and their hosts,” Annual Review of Phytopathology, vol. 40, pp. 137–167, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Shibuya and E. Minami, “Oligosaccharide signalling for defence responses in plant,” Physiological and Molecular Plant Pathology, vol. 59, no. 5, pp. 223–233, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Nürnberger and F. Brunner, “Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns,” Current Opinion in Plant Biology, vol. 5, no. 4, pp. 318–324, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Chen and Z. Li, “BTH systemic induction to defense related enzymes in wheat leaves,” Acta Botanica Boreali-Occidentalia Sinica, vol. 26, no. 12, pp. 2468–2472, 2006.
  71. C. Bohland, T. Balkenhohl, G. Loers, I. Feussner, and H. J. Grambow, “Differential induction of lipoxygenase isoforms in wheat upon treatment with rust fungus elicitor, chitin oligosaccharides, chitosan, and methyl jasmonate,” Plant Physiology, vol. 114, no. 2, pp. 679–685, 1997. View at Scopus
  72. M. V. B. Reddy, J. Arul, P. Angers, and L. Couture, “Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality,” Journal of Agricultural and Food Chemistry, vol. 47, no. 3, pp. 1208–1216, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Benhamou and R. R. Bélanger, “Induction of systemic resistance to Pythium damping-off in cucumber plants by benzothiadiazole: ultrastructure and cytochemistry of the host response,” Plant Journal, vol. 14, no. 1, pp. 13–21, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. M. N. Brisset, S. Cesbron, S. V. Thomson, and J. P. Paulin, “Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight,” European Journal of Plant Pathology, vol. 106, no. 6, pp. 529–536, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. L. G. Hjeljord, A. Stensvand, and A. Tronsmo, “Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries,” Biological Control, vol. 19, no. 2, pp. 149–160, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. W. S. Washington, S. Engleitner, G. Boontjes, and N. Shanmuganathan, “Effect of fungicides, seaweed extracts, tea tree oil, and fungal agents on fruit rot and yield in strawberry,” Australian Journal of Experimental Agriculture, vol. 39, no. 4, pp. 487–494, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Oostendorp, W. Kunz, B. Dietrich, and T. Staub, “Induced disease resistance in plants by chemicals,” European Journal of Plant Pathology, vol. 107, no. 1, pp. 19–28, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. I. F. Kappers, A. Aharoni, T. W. J. M. van Herpen, L. L. P. Luckerhoff, M. Dicke, and H. J. Bouwmeester, “Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis,” Science, vol. 309, no. 5743, pp. 2070–2072, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. G. M. Poppy and M. J. Wilkinson, Gene Flow from GM Plants—A Manual for Assessing, Measuring and Managing the Risks, Blackwell Publishing, Oxford, UK, 2005.