About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2013 (2013), Article ID 913273, 8 pages
http://dx.doi.org/10.1155/2013/913273
Review Article

Locus-Specific Biochemical Epigenetics/Chromatin Biochemistry by Insertional Chromatin Immunoprecipitation

Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Received 7 November 2012; Accepted 27 November 2012

Academic Editors: J. Bonnet, M. Frank-Kamenetskii, and J.-J. Lin

Copyright © 2013 Toshitsugu Fujita and Hodaka Fujii. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Kornberg and Y. Lorch, “Chromatin rules,” Nature Structural and Molecular Biology, vol. 14, no. 11, pp. 986–988, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Y. Zhang and W. Hörz, “Analysis of highly purified satellite DNA containing chromatin from the mouse,” Nucleic Acids Research, vol. 10, no. 5, pp. 1481–1494, 1982. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Workman and J. P. Langmore, “Nucleoprotein hybridization: a method for isolating specific genes as high molecular weight chromatin,” Biochemistry, vol. 24, no. 25, pp. 7486–7497, 1985. View at Scopus
  4. L. C. Boffa, E. M. Carpaneto, and V. G. Allfrey, “Isolation of active genes containing CAG repeats by DNA strand invasion by a peptide nucleic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 6, pp. 1901–1905, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Jasinskas and B. A. Hamkalo, “Purification and initial characterization of primate satellite chromatin,” Chromosome Research, vol. 7, no. 5, pp. 341–354, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Griesenbeck, H. Boeger, J. S. Strattan, and R. D. Kornberg, “Affinity purification of specific chromatin segments from chromosomal loci in yeast,” Molecular and Cellular Biology, vol. 23, no. 24, pp. 9275–9282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Ghirlando and G. Felsenfeld, “Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn,” Journal of Molecular Biology, vol. 376, no. 5, pp. 1417–1425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Déjardin and R. E. Kingston, “Purification of proteins associated with specific genomic loci,” Cell, vol. 136, no. 1, pp. 175–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Gorman, L. F. Moffat, and B. H. Howard, “Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells,” Molecular and Cellular Biology, vol. 2, no. 9, pp. 1044–1051, 1982. View at Scopus
  10. S. Aparicio, A. Morrison, A. Gould et al., “Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1684–1688, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. G. A. Maston, S. G. Landt, M. Snyder, and M. R. Green, “Characterization of enhancer function from genome-wide analyses,” Annual Review of Genomics and Human Genetics, vol. 13, pp. 29–57, 2012. View at Publisher · View at Google Scholar
  12. C. G. Spilianakis, M. D. Lalioti, T. Town, G. R. Lee, and R. A. Flavell, “Interchromosomal associations between alternatively expressed loci,” Nature, vol. 435, no. 7042, pp. 637–645, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Sajan and R. D. Hawkins, “Method for identifying higher-order chromatin structure,” Annual Review of Genomics and Human Genetics, vol. 13, pp. 59–82, 2012. View at Publisher · View at Google Scholar
  14. D. W. Heermann, “Physical nuclear organization: loops and entropy,” Current Opinion in Cell Biology, vol. 23, no. 3, pp. 332–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Dey, S. Thukral, S. Krishman et al., “DNA-protein interactions: methods for detection and analysis,” Molecular and Cellular Biochemistry, vol. 365, no. 1-2, pp. 279–299, 2012. View at Publisher · View at Google Scholar
  16. M. J. Solomon, P. L. Larsen, and A. Varshavsky, “Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene,” Cell, vol. 53, no. 6, pp. 937–947, 1988. View at Scopus
  17. P. Collas, “The current state of chromatin immunoprecipitation,” Molecular Biotechnology, vol. 45, no. 1, pp. 87–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. G. Fisher and M. Merkenschlager, “Gene silencing, cell fate and nuclear organisation,” Current Opinion in Genetics and Development, vol. 12, no. 2, pp. 193–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Fraser and W. Bickmore, “Nuclear organization of the genome and the potential for gene regulation,” Nature, vol. 447, no. 7143, pp. 413–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, “Capturing chromosome conformation,” Science, vol. 295, no. 5558, pp. 1306–1311, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Lomvardas, G. Barnea, D. J. Pisapia, M. Mendelsohn, J. Kirkland, and R. Axel, “Interchromosomal interactions and olfactory receptor choice,” Cell, vol. 126, no. 2, pp. 403–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Simonis, P. Klous, E. Splinter et al., “Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C),” Nature Genetics, vol. 38, no. 11, pp. 1348–1354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Lieberman-Aiden, N. L. van Berkum, L. Williams et al., “Comprehensive mapping of long-range interactions reveals folding principles of the human genome,” Science, vol. 326, no. 5950, pp. 289–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. de Wit and W. de Laat, “A decade of 3C technologies: insights into nuclear organization,” Genes and Development, vol. 26, no. 1, pp. 11–24, 2012. View at Publisher · View at Google Scholar
  25. J. Dosite and W. A. Bickmore, “Chromosome organization in the nucleus—charting new territory across the Hi-Cs,” Current Opinion in Genetics and Development, vol. 22, no. 2, pp. 125–131, 2012. View at Publisher · View at Google Scholar
  26. A. Hoshino and H. Fujii, “Insertional chromatin immunoprecipitation: a method for isolating specific genomic regions,” Journal of Bioscience and Bioengineering, vol. 108, no. 5, pp. 446–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends in Cell Biology, vol. 11, no. 6, pp. 250–257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. C. O. Pabo, E. Peisach, and R. A. Grant, “Design and selection of novel Cys2His2 zinc finger proteins,” Annual Review of Biochemistry, vol. 70, pp. 313–340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. J. Bogdanove and D. F. Voytas, “TAL effectors: customizable proteins for DNA targeting,” Science, vol. 333, no. 6051, pp. 1843–1846, 2011.
  30. T. Fujita and H. Fujii, “Direct idenification of insulator components by insertional chromatin immunoprecipitation,” PLoS One, vol. 6, no. 10, article e26109, 2011.
  31. E. P. Lei and V. G. Corces, “RNA interference machinery influences the nuclear organization of a chromatin insulator,” Nature Genetics, vol. 38, no. 8, pp. 936–941, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Yao, K. Brick, Y. Evrard, T. Xiao, R. D. Camerini-Otero, and G. Felsenfeld, “Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA,” Genes and Development, vol. 24, no. 22, pp. 2543–2555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. H. Chung, M. Whiteley, and G. Felsenfeld, “A 5 element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila,” Cell, vol. 74, no. 3, pp. 505–514, 1993. View at Scopus
  34. A. Murrell, S. Heeson, and W. Reik, “Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops,” Nature Genetics, vol. 36, no. 8, pp. 889–893, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. E. McCullagh, A. Seshan, H. El-Samad, and H. D. Madhani, “Coordinate control of gene expression noise and interchromosomal interactions in a MAP kinase pathway,” Nature Cell Biology, vol. 12, no. 10, pp. 954–962, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Fujita and H. Fujii, “Efficient isolation of specific genomic regions by insertional chromatin immunoprecipitation (iChIP) with a second-generation tagged LexA DNA-binding domain,” Advances in Bioscience and Biotechnology, vol. 3, no. 5, pp. 626–629, 2012. View at Publisher · View at Google Scholar
  37. S. E. Ong, B. Blagoev, I. Kratchmarova et al., “Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics,” Molecular & Cellular Proteomics, vol. 1, no. 5, pp. 376–386, 2002. View at Scopus
  38. P. L. Ross, Y. N. Huang, J. N. Marchese et al., “Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents,” Molecular and Cellular Proteomics, vol. 3, no. 12, pp. 1154–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. S. D. Byrum, A. Raman, S. D. Taverna, and A. Tackett, “ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus,” Cell Reports, vol. 2, no. 1, pp. 198–205, 2012. View at Publisher · View at Google Scholar
  40. A. J. Ruthenburg, H. Li, D. J. Patel, and C. D. Allis, “Multivalent engagement of chromatin modifications by linked binding modules,” Nature Reviews Molecular Cell Biology, vol. 8, no. 12, pp. 983–994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Tan, H. Luo, S. D. Lee et al., “Identification of 67 histone markes and histone lysine crotonylation as a new type of histone modification,” Cell, vol. 146, no. 6, pp. 1016–1028, 2011. View at Publisher · View at Google Scholar
  42. M. Agelopoulos, D. J. McKay, and R. S. Mann, “Developmental regulation of chromain conformation by Hox proteins in Drosophila,” Cell Reports, vol. 1, no. 4, pp. 350–359, 2012. View at Publisher · View at Google Scholar