About this Journal Submit a Manuscript Table of Contents
ISRN Biochemistry
Volume 2014 (2014), Article ID 178498, 8 pages
http://dx.doi.org/10.1155/2014/178498
Research Article

Kinetic Characterization and Effect of Immobilized Thermostable β-Glucosidase in Alginate Gel Beads on Sugarcane Juice

1Department of Biochemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India
2Akal School of Biotechnology, Eternal University, Baru Sahib, Sirmour 173101, India

Received 17 November 2013; Accepted 16 December 2013; Published 20 February 2014

Academic Editors: P. Maher and D. Stapleton

Copyright © 2014 Keerti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. R. Lynd, P. J. Weimer, W. H. van Zyl, and I. S. Pretorius, “Microbial cellulose utilization: fundamentals and biotechnology,” Microbiology and Molecular Biology Reviews, vol. 66, no. 3, pp. 506–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Dashtban and W. Qin, “Overexpression of an exotic thermotolerant β-lucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw,” Microbial Cell Factories, vol. 11, article 63, 2012. View at Publisher · View at Google Scholar
  3. Y. Gueguen, P. Chemardin, P. Labrot, A. Arnaud, and P. Galzy, “Purification and characterization of an intracellular β-glucosidase from a new strain of Leuconostoc mesenteroides isolated from cassava,” Journal of Applied Microbiology, vol. 82, no. 4, pp. 469–476, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. V. A. Marinos, M. E. Tate, and P. J. Williams, “Protocol for FAB MS/MS characterization of terpene disaccharides of wine,” Journal of Agricultural and Food Chemistry, vol. 42, no. 11, pp. 2486–2492, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Roitner, T. Schalkhammer, and F. Pittner, “Characterisation of naringinase from Aspergillus niger,” Monatshefte für Chemie, vol. 115, no. 10, pp. 1255–1267, 1984. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Shoseyov, B. A. Bravdo, D. Siegel et al., “Immobilized endo-β-glucosidase enriches flavor of wine and passion fruit juice,” Journal of Agricultural and Food Chemistry, vol. 38, no. 6, pp. 1387–1390, 1990. View at Publisher · View at Google Scholar
  7. J. Kaur, B. S. Chadha, B. A. Kumar, G. S. Kaur, and H. S. Saini, “Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922,” Electronic Journal of Biotechnology, vol. 10, no. 2, pp. 260–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Sunna, M. Moracci, M. Rossi, and G. Antranikian, “Glycosyl hydrolases from hyperthermophiles,” Extremophiles, vol. 1, no. 1, pp. 2–13, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Illanes, Enzyme Biocatalysis: Principles and Applications, Springer Science, New York, NY, USA, 2008.
  10. L. W. Chan, H. Y. Lee, and P. W. S. Heng, “Production of alginate microspheres by internal gelation using an emulsification method,” International Journal of Pharmaceutics, vol. 242, no. 1-2, pp. 259–262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Smidsrød and G. Skjåk-Braek, “Alginate as immobilization matrix for cells,” Trends in Biotechnology, vol. 8, no. 3, pp. 71–78, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. M.-C. Chi, R.-C. Lyu, L.-L. Lin, and H.-B. Huang, “Characterization of Bacillus kaustophilus leucine aminopeptidase immobilized in Ca-alginate/k-carrageenan beads,” Biochemical Engineering Journal, vol. 39, no. 2, pp. 376–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Mittal, S. Khurana, H. Singh, and R. C. Kamboj, “Characterization of dipeptidylpeptidase IV (DPP IV) immobilized in Ca alginate beads,” Enzyme and Microbial Technology, vol. 37, no. 3, pp. 318–323, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Mondal, Cloning and expression of thermostable β-glucosidase gene in E. Coli for cellobiose degradation [M.S. thesis], Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India, 2010.
  15. M. D. Busto, N. Ortega, and M. Perez-Mateos, “Studies on microbial β-D-glucosidase immobilized in alginate gel beads,” Process Biochemistry, vol. 30, no. 5, pp. 421–426, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Martino, P. G. Pifferi, and G. Spagna, “Immobilization of β-glucosidase from a commercial preparation—part 2. Optimization of the immobilization process on chitosan,” Process Biochemistry, vol. 31, no. 3, pp. 287–293, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Somogyi, “Notes on sugar determination,” The Journal of Biological Chemistry, vol. 195, no. 1, pp. 19–23, 1952.
  18. N. Ortega, M. D. Busto, and M. Perez-Mateos, “Optimisation of β-glucosidase entrapment in alginate and polyacrylamide gels,” Bioresource Technology, vol. 64, no. 2, pp. 105–111, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Jain and T. K. Ghose, “Cellobiose hydrolysis using Pichia etchellsii cells immobilized in calcium alginate,” Biotechnology and Bioengineering, vol. 26, no. 4, pp. 340–346, 1984. View at Publisher · View at Google Scholar · View at Scopus
  20. R. C. Kamboj, N. Raghav, N. Nandal, and H. Singh, “Properties of cathepsin B immobilized in calcium alginate beads,” Journal of Chemical Technology and Biotechnology, vol. 65, no. 2, pp. 149–155, 1996.
  21. E. Quiroga, C. O. Illanes, N. A. Ochoa, and S. Barberis, “Performance improvement of araujiain, a cystein phytoprotease, by immobilization within calcium alginate beads,” Process Biochemistry, vol. 46, no. 4, pp. 1029–1034, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Sahin, G. Demirel, and H. Tümtürk, “A novel matrix for the immobilization of acetylcholinesterase,” International Journal of Biological Macromolecules, vol. 37, no. 2, pp. 148–153, 2005. View at Publisher · View at Google Scholar
  23. N. Munjal and S. K. Sawhney, “Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels,” Enzyme and Microbial Technology, vol. 30, no. 5, pp. 613–619, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Emregul, S. Sungur, and U. Akbulut, “Polyacrylamide-gelatine carrier system used for invertase immobilization,” Food Chemistry, vol. 97, no. 4, pp. 591–597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M.-Y. Chang and R.-S. Juang, “Activities, stabilities, and reaction kinetics of three free and chitosan-clay composite immobilized enzymes,” Enzyme and Microbial Technology, vol. 36, no. 1, pp. 75–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. P. Nunes, H. Vila-Real, P. C. B. Fernandes, and M. H. L. Ribeiro, “Immobilization of naringinase in PVA-alginate matrix using an innovative technique,” Applied Biochemistry and Biotechnology, vol. 160, no. 7, pp. 2129–2147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. B. A. Caldwell, “Enzyme activities as a component of soil biodiversity: a review,” Pedobiologia, vol. 49, no. 6, pp. 637–644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Sato, T. Mori, T. Tosa, and I. Chibata, “Studies on immobilized enzymes—IX. Preparation and properties of aminoacylase covalently attached to halogenoacetylcelluloses,” Archives of Biochemistry and Biophysics, vol. 147, no. 2, pp. 788–796, 1971. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Yan, G. Pan, C. Ding, and G. Quan, “Kinetic and thermodynamic parameters of β-glucosidase immobilized on various colloidal particles from a paddy soil,” Colloids and Surfaces B, vol. 79, no. 1, pp. 298–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Su, T. Xia, L. Gao, Q. Dai, and Z. Zhang, “Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage,” Food and Bioproducts Processing, vol. 88, no. 2-3, pp. 83–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Y. Arica, N. G. Alaeddinoǧlu, and V. Hasirci, “Immobilization of glucoamylase onto activated pHEMA/EGDMA microspheres: properties and application to a packed-bed reactor,” Enzyme and Microbial Technology, vol. 22, no. 3, pp. 152–157, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Erginer, L. Toppare, S. Alkan, and U. Bakir, “Immobilization of invertase in functionalized copolymer matrices,” Reactive and Functional Polymers, vol. 45, no. 3, pp. 227–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. D.-S. Jiang, S.-Y. Long, J. Huang, H.-Y. Xiao, and J.-Y. Zhou, “Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres,” Biochemical Engineering Journal, vol. 25, no. 1, pp. 15–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. de Queiroz, E. Passes, S. Alves, G. Silva, O. Higa, and M. Vítolo, “Alginate-poly(vinyl alcohol) core-shell microspheres for lipase immobilization,” Journal of Applied Polymer Science, vol. 102, no. 2, pp. 1553–1560, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Yahşi, F. Şahin, G. Demirel, and H. Tümtürk, “Binary immobilization of tyrosinase by using alginate gel beads and poly(acrylamide-co-acrylic acid) hydrogels,” International Journal of Biological Macromolecules, vol. 36, no. 4, pp. 253–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Ye, Z.-K. Xu, J. Wu, C. Innocent, and P. Seta, “Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization,” Biomaterials, vol. 27, no. 22, pp. 4169–4176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance,” Nutrition Reviews, vol. 56, no. 11, pp. 317–333, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Alasalvar, J. M. Grigor, D. Zhang, P. C. Quantick, and F. Shahidi, “Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties,” Journal of Agricultural and Food Chemistry, vol. 49, no. 3, pp. 1410–1416, 2001. View at Publisher · View at Google Scholar · View at Scopus