About this Journal Submit a Manuscript Table of Contents
ISRN Biomathematics
Volume 2012 (2012), Article ID 853056, 17 pages
http://dx.doi.org/10.5402/2012/853056
Research Article

Effect of Pulsatile Flow Waveform and Womersley Number on the Flow in Stenosed Arterial Geometry

1Department of Mechanical Engineering, Future Institute of Engineering and Management, Kolkata 700150, India
2Department of Power Engineering, Jadavpur University, Kolkata 700098, India

Received 8 August 2012; Accepted 8 October 2012

Academic Editors: H. S. Hedia, T. J. Hund, and J. Suehnel

Copyright © 2012 Moloy Kumar Banerjee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Centers for Disease Control and Prevention, National Center for Health Statistics and National Center for Chronic Disease Prevention and Health Promotion, 1999.
  2. J. M. Tarbell, “Mass transport in arteries and the localization of atherosclerosis,” Annual Review of Biomedical Engineering, vol. 5, pp. 79–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Q. Liu, “Focal expression of angiotensin II type 1 receptor and smooth muscle cell proliferation in the neointima of experimental vein grafts relation to eddy blood flow,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 11, pp. 2630–2639, 1999. View at Scopus
  4. T. Zand, A. H. Hoffman, B. J. Savilonis et al., “Lipid deposition in rat aortas with intraluminal hemispherical plug stenosis: a morphological and biophysical study,” American Journal of Pathology, vol. 155, no. 1, pp. 85–92, 1999. View at Scopus
  5. D. N. Ku, D. P. Giddens, C. K. Zarins, and S. Glagov, “Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress,” Arteriosclerosis, vol. 5, no. 3, pp. 293–302, 1985. View at Scopus
  6. D. M. Wootton and D. N. Ku, “Fluid mechanics of vascular systems, diseases, and thrombosis,” Annual Review of Biomedical Engineering, no. 1, pp. 299–329, 1999. View at Scopus
  7. R. M. Nerem, “Hemodynamics and the vascular endothelium,” Journal of Biomechanical Engineering, vol. 115, no. 4, pp. 510–514, 1993. View at Scopus
  8. J.-J. Chiu, D. L. Wang, S. Chien, R. Skalak, and S. Usami, “Effects of disturbed flow on endothelial cells,” Journal of Biomechanical Engineering, vol. 120, no. 1, pp. 2–8, 1998. View at Scopus
  9. S. J. Sherwin and H. M. Blackburn, “Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows,” Journal of Fluid Mechanics, vol. 533, pp. 297–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. N. Ku, M. N. Zeigler, and J. M. Downing, “One-dimensional steady inviscid flow through a stenotic collapsible tube,” Journal of Biomechanical Engineering, vol. 112, no. 4, pp. 444–450, 1990. View at Scopus
  11. M. Ojha, R. S. C. Cobbold, K. W. Johnston, and R. L. Hummel, “Detailed visualization of pulsatile flow fields produced by modelled arterial stenoses,” Journal of Biomedical Engineering, vol. 12, no. 6, pp. 463–469, 1990. View at Scopus
  12. A. S. Dvinsky and M. Ojha, “Simulation of three-dimensional pulsatile flow through an asymmetric stenosis,” Medical and Biological Engineering and Computing, vol. 32, no. 2, pp. 138–142, 1994. View at Scopus
  13. D. N. Ku, “Blood flow in arteries,” Annual Review of Fluid Mechanics, vol. 29, pp. 399–434, 1997. View at Scopus
  14. M. Ojha, R. S. C. Cobbold, K. W. Johnston, and R. L. Hummel, “Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods,” Journal of Fluid Mechanics, vol. 203, pp. 173–197, 1989. View at Scopus
  15. S. A. Berger and L. D. Jou, “Flows in stenotic vessels,” Annual Review of Fluid Mechanics, vol. 32, pp. 347–382, 2000. View at Scopus
  16. S. A. Ahmed and D. P. Giddens, “Pulsatile poststenotic flow studies with laser Doppler anemometry,” Journal of Biomechanics, vol. 17, no. 9, pp. 695–705, 1984. View at Scopus
  17. M. Siouffi, V. Deplano, and R. Pélissier, “Experimental analysis of unsteady flows through a stenosis,” Journal of Biomechanics, vol. 31, no. 1, pp. 11–19, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Deplano and M. Siouffi, “Experimental and numerical study of pulsatile flows through stenosis: wall shear stress analysis,” Journal of Biomechanics, vol. 32, no. 10, pp. 1081–1090, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Brunette, R. Mongrain, J. Laurier, R. Galaz, and J. C. Tardif, “3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method,” Medical Engineering and Physics, vol. 30, no. 9, pp. 1193–1200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Berglund, H. Luo, T. Nishioka et al., “Highly localized arterial remodeling in patients with coronary atherosclerosis: an intravascular ultrasound study,” Circulation, vol. 96, no. 5, pp. 1470–1476, 1997. View at Scopus
  21. E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation, vol. 92, no. 3, pp. 657–671, 1995. View at Scopus
  22. A. Jeremias, H. Huegel, D. P. Lee et al., “Spatial orientation of atherosclerotic plaque in non-branching coronary artery segments,” Atherosclerosis, vol. 152, no. 1, pp. 209–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Tu and M. Deville, “Pulsatile flow of Non-Newtonian fluids through arterial stenoses,” Journal of Biomechanics, vol. 29, no. 7, pp. 899–908, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Y. K. Ng, W. L. Siauw, and W. E. W. Goh, “Numerical study of unsteady stenosis flow: parametric evaluation of power-law model,” Journal of Medical Engineering and Technology, vol. 24, no. 5, pp. 203–209, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. J. R. Buchanan, C. Kleinstreuer, and J. K. Comer, “Rheological effects on pulsatile hemodynamics in a stenosed tube,” Computers and Fluids, vol. 29, no. 6, pp. 695–724, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: transient simulations,” Journal of Biomechanics, vol. 39, no. 6, pp. 1116–1128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Amornsamankul, B. Wiwatanapataphee, Y. H. Wu, and Y. Lenbury, “Effect of non-newtonian behaviour of blood on pulsatile flows in stenotic arteries,” International Journal of Biomedical Science, vol. 1, no. 1, pp. 42–46, 2006.
  28. T. J. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge, UK, 1980.
  29. M. S. Moayeri and G. R. Zendehbudi, “Effects of elastic property of the wall on flow characteristics through arterial stenoses,” Journal of Biomechanics, vol. 36, no. 4, pp. 525–535, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. Misra and S. Chakravarty, “Flow in arteries in the presence of stenosis,” Journal of Biomechanics, vol. 19, no. 11, pp. 907–918, 1986. View at Scopus
  31. J. C. Misra, M. K. Patra, and S. C. Misra, “A non-Newtonian fluid model for blood flow through arteries under stenotic conditionse,” Journal of Biomechanics, vol. 26, no. 9, pp. 1129–1141, 1993. View at Scopus
  32. N. Stergiopulos, M. Spiridon, F. Pythoud, and J. J. Meister, “On the wave transmission and reflection properties of stenoses,” Journal of Biomechanics, vol. 29, no. 1, pp. 31–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. J. S. Stroud, S. A. Berger, and D. Saloner, “Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture,” Journal of Biomechanics, vol. 33, no. 4, pp. 443–455, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. C. J. Mills, I. T. Gabe, J. H. Gault et al., “Pressure-flow relationships and vascular impedance in man,” Cardiovascular Research, vol. 4, no. 4, pp. 405–417, 1970. View at Publisher · View at Google Scholar · View at Scopus
  35. G. R. Zendehbudi and M. S. Moayeri, “Comparison of physiological and simple pulsatile flows through stenosed arteries,” Journal of Biomechanics, vol. 32, no. 9, pp. 959–965, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. D. A. McDonald, Blood Flow in Arteries, Edward Arnold, 2nd edition, 1974.
  37. K. W. Lee and X. Y. Xu, “Modelling of flow and wall behaviour in a mildly stenosed tube,” Medical Engineering and Physics, vol. 24, no. 9, pp. 575–586, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Wiwatanapataphee, D. Poltem, Y. H. Wu, and Y. Lenbury, “Simulation of pulsatile flow of blood in stenosed coronary artery bypass with graft,” Mathematical Biosciences and Engineering, vol. 3, no. 2, pp. 371–383, 2006. View at Scopus
  39. Q. Long, X. Y. Xu, K. V. Ramnarine, and P. Hoskins, “Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis,” Journal of Biomechanics, vol. 34, no. 10, pp. 1229–1242, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. B.-K. Koo, A. Erglis, J.-H. Doh, et al., “Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study,” Journal of the American College of Cardiology, vol. 58, no. 19, pp. 1989–1997, 2011.
  41. E. Wellnhofer, J. Osman, U. Kertzscher, K. Affeld, E. Fleck, and L. Goubergrits, “Flow simulation studies in coronary arteries-Impact of side-branches,” Atherosclerosis, vol. 213, no. 2, pp. 475–481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Govindaraju, I. A. Badruddin, G. N. Viswanathan, S. V. Ramesh, and A. Badarudin, “Evaluation of functional severity of coronary artery disease and fluid dynamics’ influence on hemodynamic parameters: a review,” Physica Media. In press.
  43. C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation, Oxford Medical, New York, NY, USA, 1978.
  44. O. R. Tutty, “Pulsatile flow in a constricted channel,” Journal of Biomechanical Engineering, vol. 114, no. 1, pp. 50–54, 1992. View at Scopus
  45. P. Neofytou and S. Tsangaris, “Computational haemodynamics and the effects of Blood rheological models on the flow through an Arterial stenosis,” in European Congress on Computational Methods in Applied Sciences and Engineering, July 2004.
  46. Y. C. Fung, Biomechanics Circulation, Springer, 1996.
  47. F. Nataf, “An open boundary condition for the computation of the steady incompressible Navier-Stokes equations,” Journal of Computational Physics, vol. 85, no. 1, pp. 104–129, 1989. View at Scopus
  48. X. He and D. N. Ku, “Unsteady entrance flow development in a straight tube,” Journal of Biomechanical Engineering, vol. 116, no. 3, pp. 355–360, 1994. View at Scopus
  49. J. R. Womersley, “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,” The Journal of Physiology, vol. 127, no. 3, pp. 553–563, 1955. View at Scopus
  50. M. K. Banerjee, D. Nag, R. Ganguly, and A. Datta, “Stenotic interaction on haemodynamic parameters in double stenoses,” International Journal of Computational Fluid Dynamics, vol. 22, no. 9, pp. 609–622, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Nag and A. Datta, “Steady laminar flow of blood through successive restrictions in circular conduits of small diameter,” Proceedings of the Institution of Mechanical Engineers C, vol. 222, no. 8, pp. 1557–1573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington, DC, USA, 1980.
  53. A. B. M. Hasan and D. K. Das, “Numerical simulation of sinusoidal fluctuated pulsatile laminar flow through stenotic artery,” Journal of Applied Fluid Mechanics, vol. 1, no. 2, pp. 25–35, 2008.
  54. E. Nagel, A. Bornstedt, J. Hug, B. Schnackenburg, E. Wellnhofer, and E. Fleck, “Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound,” Magnetic Resonance in Medicine, vol. 41, no. 3, pp. 544–549, 1999.
  55. M. J. Kern, “Curriculum in interventional cardiology: coronary pressure and flow measurements in the cardiac catheterization laboratory,” Catheterization and Cardiovascular Interventions, vol. 54, no. 3, pp. 378–400, 2001.
  56. P. Papathanasopoulou, S. Zhao, U. Köhler et al., “MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions,” Journal of Magnetic Resonance Imaging, vol. 17, no. 2, pp. 153–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. C. L. Feldman and P. H. Stone, “Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque,” Current Opinion in Cardiology, vol. 15, no. 6, pp. 430–440, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Krams, J. J. Wentzel, J. A. F. Oomen et al., “Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo: combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 10, pp. 2061–2065, 1997. View at Scopus
  59. P. H. Stone, A. U. Coskun, S. Kinlay et al., “Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study,” Circulation, vol. 108, no. 4, pp. 438–444, 2003. View at Publisher · View at Google Scholar · View at Scopus