About this Journal Submit a Manuscript Table of Contents
ISRN Biomathematics
Volume 2013 (2013), Article ID 103708, 11 pages
http://dx.doi.org/10.1155/2013/103708
Research Article

Stochastic Model for In-Host HIV Dynamics with Therapeutic Intervention

1Center for Applied Research in Mathematical Sciences, Strathmore University, P.O. Box 59857 00200, Nairobi, Kenya
2Department of Mathematics, Makerere University, P.O. Box 7062, Kampala, Uganda

Received 22 February 2013; Accepted 27 March 2013

Academic Editors: X.-Y. Lou and J. Suehnel

Copyright © 2013 Waema R. Mbogo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Yan and Z. Xiang, “A delay-differential equation model of HIV infection of CD4+ T-cells with cure rate,” International Mathematical Forum, vol. 7, pp. 1475–1481, 2012.
  2. A. S. Perelson and P. W. Nelson, “Mathematical analysis of HIV-1 dynamics in vivo,” SIAM Review, vol. 41, no. 1, pp. 3–44, 1999. View at Scopus
  3. D. E. Kirschner, “Using mathematics to understand HIV immune dynamics,” Mathematical Reviews, vol. 43, pp. 191–202, 1996.
  4. A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho, “HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time,” Science, vol. 271, no. 5255, pp. 1582–1586, 1996. View at Scopus
  5. J. W. Mellors, A. Munoz, J. V. Giorgi et al., “Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection,” Annals of Internal Medicine, vol. 126, pp. 946–954, 1997.
  6. M. Nijhuis, C. A. B. Boucher, P. Schipper, T. Leitner, R. Schuurman, and J. Albert, “Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14441–14446, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Y. Tan and Z. Xiang, “Some state space models of HIV pathogenesis under treatment by anti-viral drugs in HIV-infected individuals,” Mathematical Biosciences, vol. 156, no. 1-2, pp. 69–94, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. D. R. Bangsberg, T. C. Porco, C. Kagay et al., “Modeling the HIV protease inhibitor adherence-resistance curve by use of empirically derived estimates,” Journal of Infectious Diseases, vol. 190, no. 1, pp. 162–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. S. Y. Venkata, M. O. L. Morire, U. Swaminathan, and M. Yeko, “A stochastic model of the dynamics of HIV under a combination therapeutic intervention,” Orion, vol. 25, pp. 17–30, 2009.
  10. P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Arino, M. L. Hbid, and A. E. Dads, Delay Differential Equations and Applications, Series II, Springer, Berlin, Germany, 2006.
  12. A. S. Perelson, D. E. Kirschner, and R. De Boer, “Dynamics of HIV infection of CD4+ T cells,” Mathematical Biosciences, vol. 144, no. 1, pp. 81–125, 1993. View at Scopus
  13. P. De Leenheer and H. L. Smith, “Virus dynamics: a global analysis,” SIAM Journal on Applied Mathematics, vol. 63, no. 4, pp. 1313–1327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Nowak and C. R. M. Bangham, “Population dynamics of immune responses to persistent viruses,” Science, vol. 272, no. 5258, pp. 74–79, 1996. View at Scopus
  15. L. Wang and M. Y. Li, “Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells,” Mathematical Biosciences, vol. 200, no. 1, pp. 44–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Wang and S. Ellermeyer, “HIV infection and CD4+ T cell dynamics,” Discrete and Continuous Dynamical Systems B, vol. 6, no. 6, pp. 1417–1430, 2006. View at Scopus
  17. R. V. Culshaw and S. Ruan, “A delay-differential equation model of HIV infection of CD4+ T-cells,” Mathematical Biosciences, vol. 165, no. 1, pp. 27–39, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. A. V. M. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May, and M. A. Nowak, “Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 14, pp. 7247–7251, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Y. Li and H. Shu, “Impact of intracellular delays and target-cell dynamics on in vivo viral infections,” SIAM Journal on Applied Mathematics, vol. 70, no. 7, pp. 2434–2448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Y. Li and H. Shu, “Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection,” Bulletin of Mathematical Biology, vol. 73, no. 8, pp. 1774–1793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. W. Nelson, J. D. Murray, and A. S. Perelson, “A model of HIV-1 pathogenesis that includes an intracellular delay,” Mathematical Biosciences, vol. 163, no. 2, pp. 201–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. P. W. Nelson and A. S. Perelson, “Mathematical analysis of delay differential equation models of HIV-1 infection,” Mathematical Biosciences, vol. 179, no. 1, pp. 73–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Wang, Y. Zhou, J. Wu, and J. Heffernan, “Oscillatory viral dynamics in a delayed HIV pathogenesis model,” Mathematical Biosciences, vol. 219, no. 2, pp. 104–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Y. Li and H. Shu, “Global dynamics of an in-host viral model with intracellular delay,” Bulletin of Mathematical Biology, vol. 72, no. 6, pp. 1492–1505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Nowak and R. M. May, Virus Dynamics, Cambridge University Press, Cambridge, UK, 2000.
  26. H. C. Tuckwell and F. Y. M. Wan, “On the behavior of solutions in viral dynamical models,” BioSystems, vol. 73, no. 3, pp. 157–161, 2004. View at Publisher · View at Google Scholar · View at Scopus