About this Journal Submit a Manuscript Table of Contents
ISRN Biomathematics
Volume 2013 (2013), Article ID 845918, 18 pages
http://dx.doi.org/10.1155/2013/845918
Review Article

The Problem of Antigen Affinity Discrimination in B-Cell Immunology

1Department of Chemistry, University of California Davis, Davis, CA 95616, USA
2Indraprastha Institute of Information Technology, Delhi 110020, India

Received 4 February 2013; Accepted 26 February 2013

Academic Editors: H. Kono and J. R. C. Piqueira

Copyright © 2013 Subhadip Raychaudhuri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Kindt, B. A. Osborne, and R. A. Goldsby, Kuby Immunology, Macmillan, New York, NY, USA, 2006.
  2. M. A. Moody, N. L. Yates, J. D. Amos, et al., “HIV-1 gp120 vaccine induces affinity maturation in both new and persistent antibody clonal lineages,” Journal of Virology, vol. 86, no. 14, pp. 7496–7507, 2012. View at Publisher · View at Google Scholar
  3. D. Lingwood, P. M. McTamney, H. M. Yassine, et al., “Structural and genetic basis for development of broadly neutralizing influenza antibodies,” Nature, vol. 489, no. 7417, pp. 566–570, 2012. View at Publisher · View at Google Scholar
  4. S. Khurana, D. Frasca, B. Blomberg, and H. Golding, “AID activity in B cells strongly correlates with polyclonal antibody affinity maturation in-vivo following pandemic 2009-H1N1 vaccination in humans,” PLoS Pathog, vol. 8, no. 9, Article ID e1002920, 2012.
  5. C. A. Siegrist, M. Pihlgren, C. Tougne et al., “Co-administration of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response,” Vaccine, vol. 23, no. 5, pp. 615–622, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Barkoff, K. Grondahl-Yli-Hannuksela, J. Vuononvirta, J. Mertsola, T. Kallonen, and Q. He, “Differences in avidity of IgG antibodies to pertussis toxin after acellular pertussis booster vaccination and natural infection,” Vaccine, vol. 30, no. 48, pp. 6897–6902, 2012.
  7. F. D. Batista and M. S. Neuberger, “Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate,” Immunity, vol. 8, no. 6, pp. 751–759, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Kouskoff, S. Famiglietti, G. Lacaud et al., “Antigens varying in affinity for the B cell receptor induce differential B lymphocyte responses,” Journal of Experimental Medicine, vol. 188, no. 8, pp. 1453–1464, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. F. D. Batista and M. S. Neuberger, “B cells extract and present immobilized antigen: Implications for affinity discrimination,” EMBO Journal, vol. 19, no. 4, pp. 513–520, 2000. View at Scopus
  10. A. M. Kalergis, N. Boucheron, M. A. Doucey et al., “Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex,” Nature Immunology, vol. 2, no. 3, pp. 229–234, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Coombs, A. M. Kalergis, S. G. Nathenson, C. Wofsy, and B. Goldstein, “Activated TCRs remain marked for internalization after dissociation from pMHC,” Nature Immunology, vol. 3, no. 10, pp. 926–931, 2002. View at Publisher · View at Google Scholar
  12. S. J. Fleire, J. P. Goldman, Y. R. Carrasco, M. Weber, D. Bray, and F. D. Batista, “B cell ligand discrimination through a spreading and contraction response,” Science, vol. 312, no. 5774, pp. 738–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Liu, T. Meckel, P. Tolar, H. W. Sohn, and S. K. Pierce, “Antigen affinity discrimination is an intrinsic function of the B cell receptor,” Journal of Experimental Medicine, vol. 207, no. 5, pp. 1095–1111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Ye, E. S. Bromage, and S. L. Kaattari, “The strength of B cell interaction with antigen determines the degree of IgM polymerization,” Journal of Immunology, vol. 184, no. 2, pp. 844–850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. P. K. Tsourkas, W. Liu, S. C. Das, S. K. Pierce, and S. Raychaudhuri, “Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement,” Cellular & Molecular Immunology, vol. 9, no. 1, pp. 62–74, 2012.
  16. P. K. Tsourkas, C. D. Somkanya, P. Yu-Yang, W. Liu, S. K. Pierce, and S. Raychaudhuri, “Formation of BCR oligomers provides a mechanism for B cell affinity discrimination,” Journal of Theoretical Biology, vol. 307, pp. 174–182, 2012.
  17. G. I. Bell, “Cell-cell adhesion in the immune system,” Immunology Today, vol. 4, no. 8, pp. 237–240, 1983. View at Scopus
  18. B. Goldstein, J. R. Faeder, and W. S. Hlavacek, “Mathematical and computational models of immune-receptor signalling,” Nature Reviews Immunology, vol. 4, no. 6, pp. 445–456, 2004. View at Scopus
  19. T. A. Y. Shih, E. Meffre, M. Roederer, and M. C. Nussenzweig, “Role of BCR affinity in T cell-dependent antibody responses in vivo,” Nature Immunology, vol. 3, no. 6, pp. 570–575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. T. A. Y. Shih, M. Roederer, and M. C. Nussenzweig, “Role of antigen receptor affinity in T cell-independent antibody responses in vivo,” Nature Immunology, vol. 3, no. 4, pp. 399–406, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Ye, I. M. Kaattari, and S. L. Kaattari, “The differential dynamics of antibody subpopulation expression during affinity maturation in a teleost,” Fish and Shellfish Immunology, vol. 30, no. 1, pp. 372–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. P. K. A. Mongini, C. A. Blessinger, and J. P. Dalton, “Affinity requirements for induction of sequential phases of human B cell activation by membrane IgM-cross-linking ligands,” Journal of Immunology, vol. 146, no. 6, pp. 1791–1800, 1991. View at Scopus
  23. B. P. O'Connor, L. A. Vogel, W. Zhang, et al., “Imprinting the fate of antigen-reactive B cells through the affinity of the B cell receptor,” The Journal of Immunology, vol. 177, no. 11, pp. 7723–7732, 2006.
  24. M. J. Benson, L. D. Erickson, M. W. Gleeson, and R. J. Noelle, “Affinity of antigen encounter and other early B-cell signals determine B-cell fate,” Current Opinion in Immunology, vol. 19, no. 3, pp. 275–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. B. M. Kessler, P. Bassanini, J. C. Cerottini, and I. F. Luescher, “Effects of epitope modification on T cell receptor-ligand binding and antigen recognition by seven H-2K(d)-restricted cytotoxic T lymphocyte clones specific for a photoreactive peptide derivative,” Journal of Experimental Medicine, vol. 185, no. 4, pp. 629–640, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Ye, E. Bromage, I. Kaattari, and S. Kaattari, “Transduction of binding affinity by B lymphocytes: a new dimension in immunological regulation,” Developmental and Comparative Immunology, vol. 35, no. 9, pp. 982–990, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. G. D. Victora and M. C. Nussenzweig, “Germinal centers,” Annual Review of Immunology, vol. 30, pp. 429–457, 2012. View at Publisher · View at Google Scholar
  28. D. A. Lauffenburger and J. J. Linderman, Receptors: Models for Binding, Trafficking, and Signaling, Oxford University Press, New York, NY, USA, 1996.
  29. S. Raychaudhuri, P. K. Tsourkas, and E. Willgohs, “Computational modeling of receptor ligand binding and cellular signaling processes,” in Fundamental Concepts in Biophysics, T. Jue, Ed., Humana Press, New York, NY, USA, 2009.
  30. S. Raychaudhuri, “Kinetic Monte Carlo simulation in biophysics and systems biology,” in Theory and Applications of Monte Carlo Simulations, W. K. V. Chan, Ed., InTech Open Access Publishing, 2013.
  31. T. W. McKeithan, “Kinetic proofreading in T-cell receptor signal transduction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 5042–5046, 1995. View at Publisher · View at Google Scholar
  32. S. Valitutti, S. Muller, M. Cella, E. Padovan, and A. Lanzavecchia, “Serial triggering of many T-cell receptors by a few peptide-MHC complexes,” Nature, vol. 375, no. 6527, pp. 148–151, 1995. View at Scopus
  33. S. Valitutti and A. Lanzavecchia, “Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition,” Immunology Today, vol. 18, no. 6, pp. 299–304, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. E. San José, A. Borroto, F. Niedergang, A. Alcover, and B. Alarcón, “Triggering the TCR complex causes the downregulation of nonengaged receptors by a signal transduction-dependent mechanism,” Immunity, vol. 12, no. 2, pp. 161–170, 2000. View at Scopus
  35. C. Wofsy, D. Coombs, and B. Goldstein, “Calculations show substantial serial engagement of T cell receptors,” Biophysical Journal, vol. 80, no. 2, pp. 606–612, 2001. View at Scopus
  36. M. Krogsgaard, Q. J. Li, C. Sumen, J. B. Huppa, M. Huse, and M. M. Davis, “Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity,” Nature, vol. 434, no. 7030, pp. 238–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. P. P. Yachi, J. Ampudia, N. R. J. Gascoigne, and T. Zal, “Nonstimulatory peptides contribute to antigen-induced CD8-T cell receptor interaction at the immunological synapse,” Nature Immunology, vol. 6, no. 8, pp. 785–792, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Anikeeva, D. Gakamsky, J. Scholler, and Y. Sykulev, “Evidence that the density of self peptide-MHC ligands regulates T-cell receptor signaling,” PLoS One, vol. 7, no. 8, Article ID e41466, 2012.
  39. S. Tian, R. Maile, E. J. Collins, and J. A. Frelinger, “CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate,” Journal of Immunology, vol. 179, no. 5, pp. 2952–2960, 2007. View at Scopus
  40. J. D. Stone, A. S. Chervin, and D. M. Kranz, “T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity,” Immunology, vol. 126, no. 2, pp. 165–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Dushek, R. Das, and D. Coombs, “A role for rebinding in rapid and reliable T cell responses to antigen,” PLoS Computational Biology, vol. 5, no. 11, Article ID e1000578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Aleksic, O. Dushek, H. Zhang et al., “Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time,” Immunity, vol. 32, no. 2, pp. 163–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. W. W. A. Schamel and M. Reth, “Monomeric and oligomeric complexes of the B cell antigen receptor,” Immunity, vol. 13, no. 1, pp. 5–14, 2000. View at Scopus
  44. J. M. Dal Porto, S. B. Gauld, K. T. Merrell, D. Mills, A. E. Pugh-Bernard, and J. Cambier, “B cell antigen receptor signaling 101,” Molecular Immunology, vol. 41, no. 6-7, pp. 599–613, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Ulivieri and C. T. Baldari, “The BCR signalosome: where cell fate is decided,” Journal of Biological Regulators and Homeostatic Agents, vol. 19, no. 1-2, pp. 1–16, 2005. View at Scopus
  46. P. Hou, E. Araujo, T. Zhao et al., “B cell antigen receptor signaling and internalization are mutually exclusive events,” PLoS Biology, vol. 4, no. 7, p. e200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. R. L. Geahlen, “Syk and pTyr'd: signaling through the B cell antigen receptor,” Biochimica et Biophysica Acta, vol. 1793, no. 7, pp. 1115–1127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Tolar, H. W. Sohn, and S. K. Pierce, “Viewing the antigen-induced initiation of B-cell activation in living cells,” Immunological Reviews, vol. 221, no. 1, pp. 64–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. K. Pierce and W. Liu, “The tipping points in the initiation of B cell signalling: how small changes make big differences,” Nature Reviews Immunology, vol. 10, no. 11, pp. 767–777, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. N. E. Harwood and F. D. Batista, “Early events in B cell activation,” Annual Review of Immunology, vol. 28, pp. 185–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. P. M. Waterman and J. C. Cambier, “The conundrum of inhibitory signaling by ITAM-containing immunoreceptors: potential molecular mechanisms,” FEBS Letters, vol. 584, no. 24, pp. 4878–4882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Weber, B. Treanor, D. Depoil, et al., “Phospholipase C-γ2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen,” Journal of Experimental Medicine, vol. 205, no. 4, pp. 853–868, 2008. View at Publisher · View at Google Scholar
  53. D. Depoil, S. Fleire, B. L. Treanor et al., “CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand,” Nature Immunology, vol. 9, no. 1, pp. 63–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Treanor, D. Depoil, A. Bruckbauer, and F. D. Batista, “Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity,” Journal of Experimental Medicine, vol. 208, no. 5, pp. 1055–1068, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Tolar, H. W. Sohn, and S. K. Pierce, “The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer,” Nature Immunology, vol. 6, no. 11, pp. 1168–1176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. H. W. Sohn, P. Tolar, T. Jin, and S. K. Pierce, “Fluorescence resonance energy transfer in living cells reveals dynamic membrane changes in the initiation of B cell signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 21, pp. 8143–8148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. H. W. Sohn, S. K. Pierce, and S. J. Tzeng, “Live cell imaging reveals that the inhibitory FcγRIIB destabilizes B cell receptor membrane-lipid interactions and blocks immune synapse formation,” Journal of Immunology, vol. 180, no. 2, pp. 793–799, 2008. View at Scopus
  58. P. Tolar, J. Hanna, P. D. Krueger, and S. K. Pierce, “The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens,” Immunity, vol. 30, no. 1, pp. 44–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. P. Persaud, D. L. Donermeyer, K. S. Weber, D. M. Kranz, and P. M. Allen, “High-affinity T cell receptor differentiates cognate peptide-MHC and altered peptide ligands with distinct kinetics and thermodynamics,” Molecular Immunology, vol. 47, no. 9, pp. 1793–1801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. P. K. Tsourkas, N. Baumgarth, S. I. Simon, and S. Raychaudhuri, “Mechanisms of B-cell synapse formation predicted by Monte Carlo simulation,” Biophysical Journal, vol. 92, no. 12, pp. 4196–4208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. P. K. Tsourkas, M. L. Longo, and S. Raychaudhuri, “Monte Carlo study of single molecule diffusion can elucidate the mechanism of B cell synapse formation,” Biophysical Journal, vol. 95, no. 3, pp. 1118–1125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. S. Reddy, S. Chilukuri, and S. Raychaudhuri, “The network of receptors characterize B cell receptor micro- and macroclustering in a monte carlo model,” Journal of Physical Chemistry B, vol. 114, no. 1, pp. 487–494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Srinivas Reddy, P. K. Tsourkas, and S. Raychaudhuri, “Monte Carlo study of B-cell receptor clustering mediated by antigen crosslinking and directed transport,” Cellular and Molecular Immunology, vol. 8, no. 3, pp. 255–264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. P. K. Tsourkas and S. Raychaudhuri, “Modeling of B cell synapse formation by monte carlo simulation shows that directed transport of receptor molecules is a potential formation mechanism,” Cellular and Molecular Bioengineering, vol. 3, no. 3, pp. 256–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. P. K. Tsourkas and S. Raychaudhuri, “Monte carlo investigation of diffusion of receptors and ligands that bind across opposing surfaces,” Annals of Biomedical Engineering, vol. 39, no. 1, pp. 427–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Simons and R. Ehehalt, “Cholesterol, lipid rafts, and disease,” Journal of Clinical Investigation, vol. 110, no. 5, pp. 597–603, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Simons and D. Toomre, “Lipid rafts and signal transduction,” Nature Reviews Molecular Cell Biology, vol. 1, no. 1, pp. 31–39, 2000. View at Scopus
  68. M. Triantafilou, K. Miyake, D. T. Golenbock, and K. Triantafilou, “Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation,” Journal of Cell Science, vol. 115, part 12, pp. 2603–2611, 2002. View at Scopus
  69. V. Michel and M. Bakovic, “Lipid rafts in health and disease,” Biology of the Cell, vol. 99, no. 3, pp. 129–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Lindner and R. Knorr, “Rafting trips into the cell,” Communitative and Integrative Biology, vol. 2, no. 5, pp. 420–421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Manes, G. del Real, and A. C. Martinez, “Pathogens: raft hijackers,” Nature Reviews Immunology, vol. 3, no. 7, pp. 557–568, 2003. View at Publisher · View at Google Scholar
  72. P. C. Cheng, M. L. Dykstra, R. N. Mitchell, and S. K. Pierce, “A role for lipid rafts in B cell antigen receptor signaling and antigen targeting,” Journal of Experimental Medicine, vol. 190, no. 11, pp. 1549–1560, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. M. J. Aman and K. S. Ravichandran, “A requirement for lipid rafts in B cell receptor induced Ca2+x flux,” Current Biology, vol. 10, no. 7, pp. 393–396, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Dykstra, A. Cherukuri, H. W. Sohn, S. J. Tzeng, and S. K. Pierce, “Location is everything: lipid rafts and immune cell signaling,” Annual Review of Immunology, vol. 21, pp. 457–481, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. S. K. Pierce, “Lipid rafts and B-cell activation,” Nature Reviews Immunology, vol. 2, no. 2, pp. 96–105, 2002. View at Scopus
  76. R. Xavier, T. Brennan, Q. Li, C. McCormack, and B. Seed, “Membrane compartmentation is required for efficient T cell activation,” Immunity, vol. 8, no. 6, pp. 723–732, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. K. A. Field, D. Holowka, and B. Baird, “Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains,” Journal of Biological Chemistry, vol. 272, no. 7, pp. 4276–4280, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. K. A. Field, D. Holowka, and B. Baird, “Structural aspects of the association of FcεRI with detergent-resistant membranes,” Journal of Biological Chemistry, vol. 274, no. 3, pp. 1753–1758, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Viola and N. Gupta, “Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins,” Nature Reviews Immunology, vol. 7, no. 11, pp. 889–896, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. H. W. Sohn, P. Tolar, and S. K. Pierce, “Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse,” Journal of Cell Biology, vol. 182, no. 2, pp. 367–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. N. Gupta and A. L. DeFranco, “Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation,” Molecular Biology of the Cell, vol. 14, no. 2, pp. 432–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Gupta, B. Wollscheid, J. D. Watts, B. Scheer, R. Aebersold, and A. L. DeFranco, “Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics,” Nature Immunology, vol. 7, no. 6, pp. 625–633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Klammt and B. F. Lillemeier, “How membrane structures control T cell signaling,” Frontiers in Immunology, vol. 3, p. 291, 2012.
  84. W. W. Schamel and B. Alarcon, “Organization of the resting TCR in nanoscale oligomers,” Immunological Reviews, vol. 251, no. 1, pp. 13–20, 2013. View at Publisher · View at Google Scholar
  85. V. Horejsí, “Lipid rafts and their roles in T-cell activation,” Microbes and Infection, vol. 7, no. 2, pp. 310–316, 2005. View at Scopus
  86. D. Filipp, O. Ballek, and J. Manning, “Lck, membrane microdomains, and TCR triggering machinery: defining the new rules of engagement,” Frontiers in Immunology, vol. 3, p. 155, 2012.
  87. D. A. Zacharias, J. D. Violin, A. C. Newton, and R. Y. Tsien, “Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells,” Science, vol. 296, no. 5569, pp. 913–916, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Varma and S. Mayor, “GPI-anchored proteins are organized in submicron domains at the cell surface,” Nature, vol. 394, no. 6695, pp. 798–801, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Sharma, R. Varma, R. C. Sarasij et al., “Nanoscale organization of multiple GPI-anchored proteins in living cell membranes,” Cell, vol. 116, no. 4, pp. 577–589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. D. E. Shvartsman, M. Kotler, R. D. Tall, M. G. Roth, and Y. I. Henis, “Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts,” Journal of Cell Biology, vol. 163, no. 4, pp. 879–888, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Pralle, P. Keller, E. L. Florin, K. Simons, and J. K. H. Hörber, “Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells,” Journal of Cell Biology, vol. 148, no. 5, pp. 997–1008, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. W. K. Subczynski and A. Kusumi, “Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy,” Biochimica et Biophysica Acta, vol. 1610, no. 2, pp. 231–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Gaus, E. Gratton, E. P. W. Kable et al., “Visualizing lipid structure and raft domains in living cells with two-photon microscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15554–15559, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. D. M. Owen, D. Williamson, A. Magenau, and K. Gaus, “Optical techniques for imaging membrane domains in live cells (live-cell palm of protein clustering),” Methods in Enzymology, vol. 504, pp. 221–235, 2012. View at Publisher · View at Google Scholar
  95. T. M. Razzaq, P. Ozegbe, E. C. Jury, P. Sembi, N. M. Blackwell, and P. S. Kabouridis, “Regulation of T-cell receptor signaling by membrane microdomains,” Immunology, vol. 113, no. 4, pp. 413–426, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Edidin, “The state of lipid rafts: from model membranes to cells,” Annual Review of Biophysics and Biomolecular Structure, vol. 32, pp. 257–283, 2003. View at Publisher · View at Google Scholar
  97. J. Liu, S. Qi, J. T. Groves, and A. K. Chakraborty, “Phase segregation on different length scales in a model cell membrane system,” Journal of Physical Chemistry B, vol. 109, no. 42, pp. 19960–19969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Nudelman and Y. Louzoun, “Cell surface dynamics: the balance between diffusion, aggregation and endocytosis,” IEE Proceedings Systems Biology, vol. 153, no. 1, pp. 34–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. G. Nudelman, M. Weigert, and Y. Louzoun, “In-silico cell surface modeling reveals mechanism for initial steps of B-cell receptor signal transduction,” Molecular Immunology, vol. 46, no. 15, pp. 3141–3150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. F. G. Karnell, R. J. Brezski, L. B. King, M. A. Silverman, and J. G. Monroe, “Membrane cholesterol content accounts for developmental differences in surface B cell receptor compartmentalization and signaling,” Journal of Biological Chemistry, vol. 280, no. 27, pp. 25621–25628, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press, New York, NY, USA, 1999.
  102. P. P. Yu-Yang, “Development of a Monte Carlo simulation of early events in B cell activation,” in Biomedical Engineering, University of California, Davis, Calif, USA, 2012.
  103. F. Flores-Borja, P. S. Kabouridis, E. C. Jury, D. A. Isenberg, and R. A. Mageed, “Altered lipid raft-associated proximal signaling and translocation of CD45 tyrosine phosphatase in B lymphocytes from patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 56, no. 1, pp. 291–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. V. R. Moulton and G. C. Tsokos, “Abnormalities of T cell signaling in systemic lupus erythematosus,” Arthritis Research & Therapy, vol. 13, no. 2, p. 207, 2011.
  105. M. Reth, “Oligomeric antigen receptors: a new view on signaling for the selection of lymphocytes,” Trends in Immunology, vol. 22, no. 7, pp. 356–360, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Yang and M. Reth, “Oligomeric organization of the B-cell antigen receptor on resting cells,” Nature, vol. 467, no. 7314, pp. 465–469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Yethiraj and J. C. Weisshaar, “Why are lipid rafts not observed in vivo?” Biophysical Journal, vol. 93, no. 9, pp. 3113–3119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. S. L. Veatch and S. L. Keller, “Miscibility phase diagrams of giant vesicles containing sphingomyelin,” Physical Review Letters, vol. 94, no. 14, Article ID 148101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Jansson, “Kinetic proofreading and the search for nonself-peptides,” Self/Nonself, vol. 2, no. 1, pp. 1–3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Rossy, D. J. Williamson, C. Benzing, and K. Gaus, “The integration of signaling and the spatial organization of the T cell synapse,” Frontiers in Immunology, vol. 3, p. 352, 2012.
  111. J. R. James, J. McColl, M. I. Oliveira, P. D. Dunne, E. Huang, A. Jansson, et al., “The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins,” The Journal of Biological Chemistry, vol. 286, no. 37, pp. 31993–32001, 2011.
  112. R. N. Germain, “Computational analysis of T cell receptor signaling and ligand discrimination—past, present, and future,” FEBS Letters, vol. 584, no. 24, pp. 4814–4822, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Mamo and G. A. Poland, “Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering,” Vaccine, vol. 30, no. 47, pp. 6609–6611, 2012. View at Publisher · View at Google Scholar
  114. S. Y. Qi, J. T. Groves, and A. K. Chakraborty, “Synaptic pattern formation during cellular recognition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6548–6553, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. N. J. Burroughs and C. Wülfing, “Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse,” Biophysical Journal, vol. 83, no. 4, pp. 1784–1796, 2002. View at Scopus
  116. S. Raychaudhuri, A. K. Chakraborty, and M. Kardar, “Effective membrane model of the immunological synapse,” Physical Review Letters, vol. 91, no. 20, Article ID 208101, 4 pages, 2003. View at Scopus
  117. T. R. Weikl and R. Lipowsky, “Pattern formation during T-cell adhesion,” Biophysical Journal, vol. 87, no. 6, pp. 3665–3678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. D. Coombs, M. Dembo, C. Wofsy, and B. Goldstein, “Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor Pairs,” Biophysical Journal, vol. 86, no. 3, pp. 1408–1423, 2004. View at Scopus
  119. K. I. Lim and J. Yin, “Localization of receptors in lipid rafts can inhibit signal transduction,” Biotechnology and Bioengineering, vol. 90, no. 6, pp. 694–702, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. K. H. Lee, A. R. Dinner, C. Tu et al., “The immunological synapse balances T cell receptor signaling and degradation,” Science, vol. 302, no. 5648, pp. 1218–1222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. C. R. F. Monks, B. A. Freiberg, H. Kupfer, N. Sciaky, and A. Kupfer, “Three-dimensional segregation of supramolecular activation clusters in T cells,” Nature, vol. 395, no. 6697, pp. 82–86, 1998. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Grakoui, S. K. Bromley, C. Sumen et al., “The immunological synapse: a molecular machine controlling T cell activation,” Science, vol. 285, no. 5425, pp. 221–227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. F. D. Batista, D. Iber, and M. S. Neuberger, “B cells acquire antigen from target cells after synapse formation,” Nature, vol. 411, no. 6836, pp. 489–494, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. Y. R. Carrasco, S. J. Fleire, T. Cameron, M. L. Dustin, and F. D. Batista, “LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation,” Immunity, vol. 20, no. 5, pp. 589–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Čemerski, J. Das, E. Giurisato et al., “The balance between T cell receptor signaling and degradation at the center of the immunological synapse is determined by antigen quality,” Immunity, vol. 29, no. 3, pp. 414–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. D. H. Busch and E. G. Pamer, “T cell affinity maturation by selective expansion during infection,” Journal of Experimental Medicine, vol. 189, no. 4, pp. 701–709, 1999. View at Publisher · View at Google Scholar · View at Scopus
  127. P. A. Savage, J. J. Boniface, and M. M. Davis, “A kinetic basis for T cell receptor repertoire selection during an immune response,” Immunity, vol. 10, no. 4, pp. 485–492, 1999. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Amranl, J. Verdaguer, P. Serra, S. Tafuro, R. Tan, and P. Santamaria, “Progression of autoimmune diabetes driven by avidity maturation of a T- cell population,” Nature, vol. 406, no. 6797, pp. 739–742, 2000. View at Publisher · View at Google Scholar · View at Scopus
  129. M. K. Slifka and J. L. Whitton, “Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR,” Nature Immunology, vol. 2, no. 8, pp. 711–717, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. A. S. Perelson, M. Mirmirani, and G. F. Oster, “Optimal strategies in immunology. I. B cell differentiation and proliferation,” Journal of Mathematical Biology, vol. 3, no. 3-4, pp. 325–367, 1976. View at Scopus
  131. A. S. Perelson, M. Mirmirani, and G. F. Oster, “Optimal strategies in immunology. II. B memory cell production,” Journal of Mathematical Biology, vol. 5, no. 3, pp. 213–256, 1978. View at Scopus
  132. A. S. Perelson and G. F. Oster, “Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination,” Journal of Theoretical Biology, vol. 81, no. 4, pp. 645–670, 1979. View at Scopus
  133. Z. Agur, G. Mazor, and I. Meilijson, “Maturation of the humoral immune response as an optimization problem,” Proceedings of the Royal Society, vol. 245, no. 1313, pp. 147–150, 1991. View at Publisher · View at Google Scholar
  134. T. B. Kepler and A. S. Perelson, “Somatic hypermutation in B cells: an optimal control treatment,” Journal of Theoretical Biology, vol. 164, no. 1, pp. 37–64, 1993. View at Publisher · View at Google Scholar · View at Scopus
  135. H. Qi, J. G. Egen, A. Y. C. Huang, and R. N. Germain, “Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells,” Science, vol. 312, no. 5780, pp. 1672–1676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. C. D. C. Allen, T. Okada, H. L. Tang, and J. G. Cyster, “Imaging of germinal center selection events during affinity maturation,” Science, vol. 315, no. 5811, pp. 528–531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. Y. R. Carrasco and F. D. Batista, “B cells acquire particulate antigen ina macrophage-rich area at the boundary between the follicle andthe subcapsular sinus of the lymph node,” Immunity, vol. 27, no. 1, pp. 160–171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. T. Junt, E. A. Moseman, M. Iannacone et al., “Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells,” Nature, vol. 450, no. 7166, pp. 110–114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. T. G. Phan, I. Grigorova, T. Okada, and J. G. Cyster, “Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells,” Nature Immunology, vol. 8, no. 9, pp. 992–1000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. F. D. Batista and N. E. Harwood, “The who, how and where of antigen presentation to B cells,” Nature Reviews Immunology, vol. 9, no. 1, pp. 15–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Meyer-Hermann, M. T. Figge, and K. M. Toellner, “Germinal centres seen through the mathematical eye: B-cell models on the catwalk,” Trends in Immunology, vol. 30, no. 4, pp. 157–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. H. P. Mirsky, M. J. Miller, J. J. Linderman, and D. E. Kirschner, “Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection,” Journal of Theoretical Biology, vol. 287, pp. 160–170, 2011.
  143. R. M. Vroomans, A. F. Maree, R. J. de Boer, and J. B. Beltman, “Chemotactic migration of T cells towards dendritic cells promotes the detection of rare antigens,” PLOS Computational Biology, vol. 8, no. 11, Article ID e1002763, 2012.
  144. M. T. Figge, A. Garin, M. Gunzer, M. Kosco-Vilbois, K. M. Toellner, and M. Meyer-Hermann, “Deriving a germinal center lymphocyte migration model from two-photon data,” Journal of Experimental Medicine, vol. 205, no. 13, pp. 3019–3029, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. Y. Takahashi, D. M. Cerasoli, J. M. Dal Porto et al., “Relaxed negative selection in germinal centers and impaired affinity maturation in bcl-x(L) transgenic mice,” Journal of Experimental Medicine, vol. 190, no. 3, pp. 399–409, 1999. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Raychaudhuri, E. Willgohs, T. N. Nguyen, E. M. Khan, and T. Goldkorn, “Monte Carlo simulation of cell death signaling predicts large cell-to-cell stochastic fluctuations through the type 2 pathway of apoptosis,” Biophysical Journal, vol. 95, no. 8, pp. 3559–3562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. J. G. Albeck, J. M. Burke, S. L. Spencer, D. A. Lauffenburger, and P. K. Sorger, “Modeling a snap-action, variable-delay switch controlling extrinsic cell death,” PLoS Biology, vol. 6, no. 12, article e299, pp. 2831–2852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. H. Düssmann, M. Rehm, C. G. Concannon et al., “Single-cell quantification of Bax activation and mathematical modelling suggest pore formation on minimal mitochondrial Bax accumulation,” Cell Death and Differentiation, vol. 17, no. 2, pp. 278–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Skommer, T. Brittain, and S. Raychaudhuri, “Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death,” Apoptosis, vol. 15, no. 10, pp. 1223–1233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. J. Skommer, S. C. Das, A. Nair, T. Brittain, and S. Raychaudhuri, “Nonlinear regulation of commitment to apoptosis by simultaneous inhibition of Bcl-2 and XIAP in leukemia and lymphoma cells,” Apoptosis, vol. 16, no. 6, pp. 619–626, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. S. Raychaudhuri, “How can we kill cancer cells: insights from the computational models of apoptosis,” World Journal of Clinical Oncology, vol. 1, no. 1, pp. 24–28, 2010.
  152. P. S. Kabouridis and E. C. Jury, “Lipid rafts and T-lymphocyte function: implications for autoimmunity,” FEBS Letters, vol. 582, no. 27, pp. 3711–3718, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. J. Surls, C. Nazarov-Stoica, M. Kehl, C. Olsen, S. Casares, and T. D. Brumeanu, “Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response,” PLoS One, vol. 7, no. 6, Article ID e38733, 2012.
  154. A. K. Dey and I. K. Srivastava, “Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens,” Expert Review of Vaccines, vol. 10, no. 2, pp. 227–251, 2011. View at Publisher · View at Google Scholar · View at Scopus