About this Journal Submit a Manuscript Table of Contents
ISRN Cell Biology
Volume 2012 (2012), Article ID 917167, 12 pages
http://dx.doi.org/10.5402/2012/917167
Review Article

Senescence-Accelerated Mice P8: A Tool to Study Brain Aging and Alzheimer's Disease in a Mouse Model

Unitat de Farmacologia i Farmacognòosia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona y Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Nucli Universitari de Pedralbes, 08028 Barcelona, Spain

Received 23 September 2012; Accepted 15 October 2012

Academic Editors: A. Chiarini, E. Kolettas, and D. Scholz

Copyright © 2012 Mercè Pallàs. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Scopus
  2. D. Harman, “The free radical theory of aging,” Antioxidants and Redox Signaling, vol. 5, no. 5, pp. 557–561, 2003. View at Scopus
  3. M. A. Smith, G. Perry, P. L. Richey et al., “Oxidative damage in Alzheimer's,” Nature, vol. 382, no. 6587, pp. 120–121, 1996. View at Scopus
  4. X. Zhu, A. K. Raina, G. Perry, and M. A. Smith, “Alzheimer's disease: the two-hit hypothesis,” The Lancet Neurology, vol. 3, no. 4, pp. 219–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Zhu, H. G. Lee, G. Perry, and M. A. Smith, “Alzheimer disease, the two-hit hypothesis: an update,” Biochimica et Biophysica Acta, vol. 1772, no. 4, pp. 494–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. O. M. Kuro, “Klotho,” Pflügers Archives European Journal of Physiology, vol. 459, no. 2, pp. 333–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. K. Ahlijanian, N. X. Barrezueta, R. D. Williams et al., “Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 6, pp. 2910–2915, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Avila, E. Gómez De Barreda, T. Engel et al., “Tau kinase i overexpression induces dentate gyrus degeneration,” Neurodegenerative Diseases, vol. 7, no. 1–3, pp. 13–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Takeda, T. Matsushita, M. Kurozumi, K. Takemura, K. Higuchi, and M. Hosokawa, “Pathobiology of the Senescence-accelerated Mouse (SAM),” Experimental Gerontology, vol. 32, no. 1-2, pp. 117–127, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Takeda, “Senescence-accelerated mouse (SAM): a biogerontological resource in aging research,” Neurobiology of Aging, vol. 20, no. 2, pp. 105–110, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. R. S. Cotran, V. Kumar, and S. L. Robbins, “Diseases of aging,” in Robbins Pathologic Basis of Disease, pp. 543–551, W. B. Saunders Company, Philadelphia, Pa, USA, 1989.
  12. M. A. Smith, R. K. Kutty, P. L. Richey et al., “Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer's disease,” American Journal of Pathology, vol. 145, no. 1, pp. 42–47, 1994. View at Scopus
  13. M. A. Smith, M. Rudnicka-Nawrot, P. L. Richey et al., “Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer's disease,” Journal of Neurochemistry, vol. 64, no. 6, pp. 2660–2666, 1995. View at Scopus
  14. M. A. Smith, P. L. Richey Harris, L. M. Sayre, J. S. Beckman, and G. Perry, “Widespread peroxynitrite-mediated damage in Alzheimer's disease,” Journal of Neuroscience, vol. 17, no. 8, pp. 2653–2657, 1997. View at Scopus
  15. G. Perry, R. J. Castellani, K. Hirai, and M. A. Smith, “Reactive oxygen species mediate cellular damage in Alzheimer disease,” Journal of Alzheimer's Disease, vol. 1, no. 1, pp. 45–55, 1998. View at Scopus
  16. A. Nunomura, G. Perry, G. Aliev et al., “Oxidative damage is the earliest event in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 8, pp. 759–767, 2001. View at Scopus
  17. D. A. Butterfield, T. Koppal, B. Howard et al., “Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-α-phenylnitrone and vitamin E,” Annals of the New York Academy of Sciences, vol. 854, pp. 448–462, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Mori, K. Utsumi, J. Liu, and M. Hosokawa, “Oxidative damage in the senescence-accelerated mouse,” Annals of the New York Academy of Sciences, vol. 854, pp. 239–250, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Pallas, A. Camins, M. A. Smith, G. Perry, H. G. Lee, and G. Casadesus, “From aging to Alzheimer's disease: unveiling “the switch” with the senescence-accelerated mouse model (SAMP8),” Journal of Alzheimer's Disease, vol. 15, no. 4, pp. 615–624, 2008. View at Scopus
  20. R. Cristòfol, D. Porquet, R. Corpas, et al., “Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol,” Journal of Pineal Research, vol. 52, no. 3, pp. 271–281, 2012.
  21. Y. Chiba, A. Shimada, N. Kumagai et al., “The senescence-accelerated mouse (SAM): a higher oxidative stress and age-dependent degenerative diseases model,” Neurochemical Research, vol. 34, no. 4, pp. 679–687, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Alvarez-García, I. Vega-Naredo, V. Sierra et al., “Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age,” Biogerontology, vol. 7, no. 1, pp. 43–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Nabeshi, S. Oikawa, S. Inoue, K. Nishino, and S. Kawanishi, “Proteomic analysis for protein carbonyl as an indicator of oxidative damage in senescence-accelerated mice,” Free Radical Research, vol. 40, no. 11, pp. 1173–1181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Bayram, S. Nikolai, P. Huebbe, et al., “Biomarkers of oxidative stress, antioxidant defence and inflammation are altered in the senescence-accelerated mouse prone 8,” Age. In press. View at Publisher · View at Google Scholar
  25. W. Gan, B. Nie, F. Shi, et al., “Age-dependent increases in the oxidative damage of DNA, RNA, and their metabolites in normal and senescence-accelerated mice analyzed by LC-MS/MS: urinary 8-oxoguanosine as a novel biomarker of aging,” Free Radical Biology Medicine, vol. 52, no. 9, pp. 1700–1707, 2012.
  26. A. L. Petursdottir, S. A. Farr, J. E. Morley, W. A. Banks, and G. V. Skuladottir, “Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM),” Neurobiology of Aging, vol. 28, no. 8, pp. 1170–1178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Yasui, M. Ishibashi, S. Matsugo, S. Kojo, Y. Oomura, and K. Sasaki, “Brain lipid hydroperoxide level increases in senescence-accelerated mice at an early age,” Neuroscience Letters, vol. 350, no. 1, pp. 66–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. D. A. Butterfield, B. J. Howard, S. Yatin, K. L. Allen, and J. M. Carney, “Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-α-phenylnitrone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 2, pp. 674–678, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Shi, S. Xiao, J. Liu et al., “Ginkgo biloba extract EGb761 protects against aging-associated mitochondrial dysfunction in platelets and hippocampi of SAMP8 mice,” Platelets, vol. 21, no. 5, pp. 373–379, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Kurokawa, S. Asada, S. Nishitani, and O. Hazeki, “Age-related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse,” Neuroscience Letters, vol. 298, no. 2, pp. 135–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. F. X. Sureda, J. Gutierrez-Cuesta, M. Romeu et al., “Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8,” Experimental Gerontology, vol. 41, no. 4, pp. 360–367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. K. Ali, W. A. Banks, V. B. Kumar et al., “Nitric oxide activity and isoenzyme expression in the senescence- accelerated mouse P8 model of Alzheimer's disease: effects of anti-amyloid antibody and antisense treatments,” Journals of Gerontology, vol. 64, no. 10, pp. 1025–1030, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Colas, A. Gharib, L. Bezin et al., “Regional age-related changes in neuronal nitric oxide synthase (nNOS), messenger RNA levels and activity in SAMP8 brain,” BMC Neuroscience, vol. 7, article 81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Acuña-Castroviejo, M. Carretero, C. Doerrier et al., “Melatonin protects lung mitochondria from aging,” Age, vol. 34, no. 3, pp. 681–692, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. X. N. Song, L. Q. Zhang, D. G. Liu et al., “Oxidative damage to RNA and expression patterns of MTH1 in the hippocampi of senescence-accelerated SAMP8 mice and Alzheimer's disease patients,” Neurochemical Research, vol. 36, no. 8, pp. 1558–1565, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. E. Morley, H. J. Armbrecht, S. A. Farr, et al., “The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer's disease,” Biochimica and Biophysica Acta, vol. 1822, no. 5, pp. 650–656, 2012.
  37. S. A. Farr, T. O. Price, W. A. Banks, et al., “Effect of alpha-lipoic acid on memory, oxidation, and lifespan in SAMP8 mice,” Journal of Alzheimer's Disease, vol. 32, no. 2, pp. 447–455, 2012. View at Publisher · View at Google Scholar
  38. J. D. Zheng, A. L. Hei, P. P. Zuo et al., “Age-related alterations in the expression of MTH2 in the hippocampus of the SAMP8 mouse with learning and memory deterioration,” Journal of the Neurological Sciences, vol. 287, no. 1-2, pp. 188–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Xia, K. Higuchi, M. Shimizu et al., “Genetic typing of the Senescence-accelerated mouse (SAM) strains with microsatellite markers,” Mammalian Genome, vol. 10, no. 3, pp. 235–238, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. D. A. Butterfield and H. F. Poon, “The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease,” Experimental Gerontology, vol. 40, no. 10, pp. 774–783, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. X. R. Cheng, W. X. Zhou, Y. X. Zhang, D. S. Zhou, R. F. Yang, and L. F. Chen, “Differential gene expression profiles in the hippocampus of senescence-accelerated mouse,” Neurobiology of Aging, vol. 28, no. 4, pp. 497–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Zheng, X. R. Cheng, W. X. Zhou, and Y. X. Zhang, “Gene expression patterns of hippocampus and cerebral cortex of senescence-accelerated mouse treated with Huang-Lian-Jie-Du decoction,” Neuroscience Letters, vol. 439, no. 2, pp. 119–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. C. Chen, G. Lu, C. Y. Chan et al., “Microarray profile of brain aging-related genes in the frontal cortex of SAMP8,” Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 12–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Casadesus, J. Gutierrez-Cuesta, and H. G. Lee, “Neuronal cell cycle re-entry markers are altered in the senescence accelerated mouse P8 (SAMP8),” Journal of Alzheimer's disease, vol. 30, no. 3, pp. 573–583, 2012.
  45. L. Zhu, J. Yu, Q. Shi et al., “Strain-and age-related alteration of proteins in the brain of SAMP8 and SAMR1 mice,” Journal of Alzheimer's Disease, vol. 23, no. 4, pp. 641–654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Hosokawa, R. Kasai, K. Higuchi, et al., “Grading score system: a method for evaluation of the degree of senescence in senescence accelerated mouse (SAM),” Mechanisms of Ageing and Development, vol. 26, no. 1, pp. 91–102, 1984. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Takeda, M. Hosokawa, K. Higuchi, M. Hosono, I. Akiguchi, and H. Katoh, “A novel murine model of aging, Senescence-accelerated mouse (SAM),” Archives of Gerontology and Geriatrics, vol. 19, no. 2, pp. 185–192, 1994. View at Publisher · View at Google Scholar · View at Scopus
  48. J. C. López-Ramos, M. T. Jurado-Parras, C. Sanfeliu, D. Acuña-Castroviejo, and J. M. Delgado-García, “Learning capabilities and CA1-prefrontal synaptic plasticity in a mice model of accelerated senescence,” Neurobiology of Aging, vol. 33, no. 3, pp. 627.e13–627.e26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Miyamoto, “Characteristics of age-related behavioral changes in senescence-accelerated Mouse SAMP8 and SAMP10,” Experimental Gerontology, vol. 32, no. 1-2, pp. 139–148, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Miyamoto, Y. Kiyota, N. Yamazaki, et al., “Age-related changes in learning and memory in the senescence-accelerated mouse (SAM),” Physiology and Behavior, vol. 38, no. 3, pp. 399–406, 1986. View at Scopus
  51. T. Kawamata, I. Akiguchi, H. Yagi et al., “Neuropathological studies on strains of senescence-accelerated mice (SAM) with age-related deficits in learning and memory,” Experimental Gerontology, vol. 32, no. 1-2, pp. 161–169, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. X. H. Zhao and Y. Nomura, “Age-related changes in uptake and release on L-[3H]noradrenaline in brain slices of senescence accelerated mouse,” International Journal of Developmental Neuroscience, vol. 8, no. 3, pp. 267–272, 1990. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Kitamura, X. H. Zhao, T. Ohnuki, M. Takei, and Y. Nomura, “Age-related changes in transmitter glutamate and NMDA receptor/channels in the brain of senescence-accelerated mouse,” Neuroscience Letters, vol. 137, no. 2, pp. 169–172, 1992. View at Publisher · View at Google Scholar · View at Scopus
  54. D. J. Selkoe, “Amyloid β-protein and the genetics of Alzheimer's disease,” Journal of Biological Chemistry, vol. 271, no. 31, pp. 18295–18298, 1996. View at Scopus
  55. A. M. Canudas, J. Gutierrez-Cuesta, M. I. Rodríguez et al., “Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM),” Mechanisms of Ageing and Development, vol. 126, no. 12, pp. 1300–1304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Wei, Y. Zhang, and J. Zhou, “Alzheimer's disease-related gene expression in the brain of senescence accelerated mouse,” Neuroscience Letters, vol. 268, no. 3, pp. 139–142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Gutierrez-Cuesta, F. X. Sureda, M. Romeu et al., “Chronic administration of melatonin reduces cerebral injury biomarkers in SAMP8,” Journal of Pineal Research, vol. 42, no. 4, pp. 394–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Gutierrez-Cuesta, M. Tajes, A. Jiménez, A. Coto-Montes, A. Camins, and M. Pallàs, “Evaluation of potential pro-survival pathways regulated by melatonin in a murine senescence model,” Journal of Pineal Research, vol. 45, no. 4, pp. 497–505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Tajes, J. Gutierrez-Cuesta, J. Folch et al., “Lithium treatment decreases activities of tau kinases in a murine model of senescence,” Journal of Neuropathology and Experimental Neurology, vol. 67, no. 6, pp. 612–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Hamdane, P. Delobel, A. V. Sambo et al., “Neurofibrillary degeneration of the Alzheimer-type: an alternate pathway to neuronal apoptosis?” Biochemical Pharmacology, vol. 66, no. 8, pp. 1619–1625, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Takemura, S. Nakamura, I. Akiguchi et al., “β/A4 proteinlike immunoreactive granular structures in the brain of senescence-accelerated mouse,” American Journal of Pathology, vol. 142, no. 6, pp. 1887–1897, 1993. View at Scopus
  62. A. Fukunari, A. Kato, Y. Sakai et al., “Colocalization of prolyl endopeptidase and amyloid β-peptide in brains of senescence-accelerated mouse,” Neuroscience Letters, vol. 176, no. 2, pp. 201–204, 1994. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Nomura, Y. Yamanaka, Y. Kitamura et al., “Senescence-accelerated mouse: neurochemical studies on aging,” Annals of the New York Academy of Sciences, vol. 786, pp. 410–418, 1996. View at Scopus
  64. V. B. Kumar, M. W. Franko, S. A. Farr, H. J. Armbrecht, and J. E. Morley, “Identification of age-dependent changes in expression of senescence-accelerated mouse (SAMP8) hippocampal proteins by expression array analysis,” Biochemical and Biophysical Research Communications, vol. 272, no. 3, pp. 657–661, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. J. E. Morley, V. B. Kumar, A. E. Bernardo et al., “β-Amyloid precursor polypeptide in SAMP8 mice affects learning and memory,” Peptides, vol. 21, no. 12, pp. 1761–1767, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. V. B. Kumar, K. Vyas, M. Franko et al., “Molecular cloning, expression, and regulation of hippocampal amyloid precursor protein of senescence accelerated mouse (SAMP8),” Biochemistry and Cell Biology, vol. 79, no. 1, pp. 57–67, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. H. F. Poon, G. Joshi, R. Sultana et al., “Antisense directed at the Aβ region of APP decreases brain oxidative markers in aged senescence accelerated mice,” Brain Research, vol. 1018, no. 1, pp. 86–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. H. F. Poon, A. Castegna, S. A. Farr et al., “Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain,” Neuroscience, vol. 126, no. 4, pp. 915–926, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Del Valle, J. Duran-Vilaregut, G. Manich et al., “Early amyloid accumulation in the hippocampus of SAMP8 mice,” Journal of Alzheimer's Disease, vol. 19, no. 4, pp. 1303–1315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Del Valle, S. Bayod, A. Camins, et al., “Dendritic spine abnormalities in hippocampal CA1 pyramidal neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 32, no. 1, pp. 233–240, 2012.
  71. J. Del Valle, J. Duran-Vilaregut, G. Manich et al., “Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice,” Neurodegenerative Diseases, vol. 8, no. 6, pp. 421–429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Pelegrí, A. M. Canudas, J. del Valle et al., “Increased permeability of blood-brain barrier on the hippocampus of a murine model of senescence,” Mechanisms of Ageing and Development, vol. 128, no. 9, pp. 522–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. J. del Valle, J. Duran-Vilaregut, G. Manich et al., “Time-course of blood-brain barrier disruption in senescence-accelerated mouse prone 8 (SAMP8) mice,” International Journal of Developmental Neuroscience, vol. 27, no. 1, pp. 47–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Manich, C. Mercader, J. Del Valle et al., “Characterization of amyloid-β granules in the hippocampus of SAMP8 mice,” Journal of Alzheimer's Disease, vol. 25, no. 3, pp. 535–546, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Wu, M. Ueno, M. Onodera et al., “RAGE, LDL receptor, and LRP1 expression in the brains of SAMP8,” Neuroscience Letters, vol. 461, no. 2, pp. 100–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Oddo, A. Caccamo, L. Tran et al., “Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease: a link between Aβ and tau pathology,” Journal of Biological Chemistry, vol. 281, no. 3, pp. 1599–1604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. D. M. Walsh and D. J. Selkoe, “Aβ oligomers—a decade of discovery,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1172–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. W. A. Banks, S. A. Farr, J. E. Morley, K. M. Wolf, V. Geylis, and M. Steinitz, “Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age-related selective uptake with reversal of learning impairment,” Experimental Neurology, vol. 206, no. 2, pp. 248–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. Q. Li, H. F. Zhao, Z. F. Zhang et al., “Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Aβ1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus,” Neuroscience, vol. 163, no. 3, pp. 741–749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. V. B. Kumar, M. Franko, W. A. Banks et al., “Increase in presenilin 1 (PS1) levels in senescence-accelerated mice (SAMP8) may indirectly impair memory by affecting amyloid precursor protein (APP) processing,” Journal of Experimental Biology, vol. 212, no. 4, pp. 494–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. J. Palop and L. Mucke, “Amyloid-β-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks,” Nature Neuroscience, vol. 13, no. 7, pp. 812–818, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Y. Hsia, E. Masliah, L. McConlogue, et al., “Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, pp. 3228–3233, 1999.
  83. Y. Yoshiyama, M. Higuchi, B. Zhang et al., “Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model,” Neuron, vol. 53, no. 3, pp. 337–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Perez-Cruz, M. W. Nolte, M. M. Van Gaalen et al., “Reduced spine density in specific regions of CA1 pyramidal neurons in two transgenic mouse models of Alzheimer's disease,” Journal of Neuroscience, vol. 31, no. 10, pp. 3926–3934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. W. A. Banks, S. M. Robinson, S. Verma, and J. E. Morley, “Efflux of human and mouse amyloid β proteins 1-40 and 1-42 from brain: impairment in a mouse model of alzheimer's disease,” Neuroscience, vol. 121, no. 2, pp. 487–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. M. A. Erickson, M. L. Niehoff, S. A. Farr, et al., “Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain,” Journal of Alzheimer's Disease, vol. 28, no. 4, pp. 951–960, 2012.
  87. G. H. Chen, Y. J. Wang, X. M. Wang, and J. N. Zhou, “Accelerated senescence prone mouse-8 shows early onset of deficits in spatial learning and memory in the radial six-arm water maze,” Physiology and Behavior, vol. 82, no. 5, pp. 883–890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. X. Wei, Y. Zhang, and J. Zhou, “Alzheimer's disease-related gene expression in the brain of senescence accelerated mouse,” Neuroscience Letters, vol. 268, no. 3, pp. 139–142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. W. A. Banks, S. A. Farr, and J. E. Morley, “Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse,” Journals of Gerontology, vol. 55, no. 12, pp. B601–B606, 2000. View at Scopus
  90. S. Michan and D. Sinclair, “Sirtuins in mammals: insights into their biological function,” Biochemical Journal, vol. 404, no. 1, pp. 1–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. M. D. Knutson and C. Leeuwenburgh, “Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases,” Nutrition Reviews, vol. 66, no. 10, pp. 591–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. V. Quivy and C. Van Lint, “Regulation at multiple levels of NF-κB-mediated transactivation by protein acetylation,” Biochemical Pharmacology, vol. 68, no. 6, pp. 1221–1229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. W. Qin, T. Yang, L. Ho et al., “Neuronal SIRT1 activation as a novel mechanism underlying the prevention of alzheimer disease amyloid neuropathology by calorie restriction,” Journal of Biological Chemistry, vol. 281, no. 31, pp. 21745–21754, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. G. Donmez, D. Wang, D. E. Cohen, and L. Guarente, “SIRT1 suppresses β-amyloid production by activating the α-secretase gene ADAM10,” Cell, vol. 142, no. 2, pp. 320–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. D. J. Bonda, H. G. Lee, A. Camins et al., “The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations,” The Lancet Neurology, vol. 10, no. 3, pp. 275–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. S. S. Karuppagounder, J. T. Pinto, H. Xu, H. L. Chen, M. F. Beal, and G. E. Gibson, “Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease,” Neurochemistry International, vol. 54, no. 2, pp. 111–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Pallàs, J. G. Pizarro, J. Gutierrez-Cuesta et al., “Modulation of SIRT1 expression in different neurodegenerative models and human pathologies,” Neuroscience, vol. 154, no. 4, pp. 1388–1397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. M. J. Sharps, “Spatial memory in young and elderly adults: category structure of stimulus sets,” Psychology and Aging, vol. 6, no. 2, pp. 309–312, 1991. View at Publisher · View at Google Scholar · View at Scopus
  99. R. J. Weber, L. T. Brown, and J. K. Weldon, “Cognitive maps of environmental knowledge and preference in nursing home patients,” Experimental Aging Research, vol. 4, no. 3, pp. 157–174, 1978.
  100. J. E. Morley, S. A. Farr, and J. F. Flood, “Antibody to amyloid beta protein alleviates impaired acquisition, retention, and memory processing in SAMP8 mice,” Neurobiology of Learning and Memory, vol. 78, no. 1, pp. 125–138, 2002.
  101. J. F. Flood and J. E. Morley, “Early onset of age-related impairment of aversive and appetitive learning in the SAM-P/8 mouse,” Journals of Gerontology, vol. 47, no. 2, pp. B52–B59, 1992. View at Scopus
  102. J. F. Flood, S. A. Farr, K. Uezu, and J. E. Morley, “The pharmacology of post-trial memory processing in septum,” European Journal of Pharmacology, vol. 350, no. 1, pp. 31–38, 1998. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Ikegami, S. Shumiya, and H. Kawamura, “Age-related changes in radial-arm maze learning and basal forebrain cholinergic systems in senescence accelerated mice (SAM),” Behavioural Brain Research, vol. 51, no. 1, pp. 15–22, 1992. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Cheng, J. Yu, Z. Jiang et al., “Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice,” Neuroscience Letters, vol. 432, no. 2, pp. 111–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. J. F. Flood and J. E. Morley, “Age-related changes in footshock avoidance acquisition and retention in senescence accelerated mouse (SAM),” Neurobiology of Aging, vol. 14, no. 2, pp. 153–157, 1993. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Miyamoto, “Characteristics of age-related behavioral changes in senescence-accelerated Mouse SAMP8 and SAMP10,” Experimental Gerontology, vol. 32, no. 1-2, pp. 139–148, 1997. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Miyamoto, Y. Kiyota, M. Nishiyama, and A. Nagaoka, “Senescence-accelerated mouse (SAM): age-related reduced anxiety-like behavior in the SAM-P/8 strain,” Physiology and Behavior, vol. 51, no. 5, pp. 979–985, 1992. View at Publisher · View at Google Scholar · View at Scopus
  108. H. Kasai, M. Matsuzaki, J. Noguchi, N. Yasumatsu, and H. Nakahara, “Structure-stability-function relationships of dendritic spines,” Trends in Neurosciences, vol. 26, no. 7, pp. 360–368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Kasai, M. Fukuda, S. Watanabe, A. Hayashi-Takagi, and J. Noguchi, “Structural dynamics of dendritic spines in memory and cognition,” Trends in Neurosciences, vol. 33, no. 3, pp. 121–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Bourne and K. M. Harris, “Do thin spines learn to be mushroom spines that remember?” Current Opinion in Neurobiology, vol. 17, no. 3, pp. 381–386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. F. Madeo, N. Tavernarakis, and G. Kroemer, “Can autophagy promote longevity?” Nature Cell Biology, vol. 12, no. 9, pp. 842–846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. B. Caballero and A. Coto-Montes, “An insight into the role of autophagy in cell responses in the aging and neurodegenerative brain,” Histology and Histopathology, vol. 27, no. 3, pp. 263–275, 2012.
  113. B. A. McCray and J. P. Taylor, “The role of autophagy in age-related neurodegeneration,” NeuroSignals, vol. 16, no. 1, pp. 75–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Shintani and D. J. Klionsky, “Autophagy in health and disease: a double-edged sword,” Science, vol. 306, no. 5698, pp. 990–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Cichanover, “Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting,” Cell Death and Differentiation, vol. 12, no. 9, pp. 1178–1190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. B. Levine and D. J. Klionsky, “Development by self-digestion: molecular mechanisms and biological functions of autophagy,” Developmental Cell, vol. 6, no. 4, pp. 463–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Caballero, I. Vega-Naredo, V. Sierra et al., “Autophagy upregulation and loss of NF-κB in oxidative stress-related immunodeficient SAMP8 mice,” Mechanisms of Ageing and Development, vol. 130, no. 11-12, pp. 722–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. Q. Ma, J. Qiang, P. Gu, Y. Wang, Y. Geng, and M. Wang, “Age-related autophagy alterations in the brain of senescence accelerated mouse prone 8 (SAMP8) mice,” Experimental Gerontology, vol. 46, no. 7, pp. 533–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Menardo, Y. Tang, and S. Ladrech, “Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse cochlea,” Antioxidant and Redox Signaling, vol. 16, no. 3, pp. 263–274, 2012.
  120. T. Nishikawa, J. A. Takahashi, Y. Fujibayashi et al., “An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model,” Neuroscience Letters, vol. 254, no. 2, pp. 69–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  121. P. H. Reddy and M. F. Beal, “Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease,” Trends in Molecular Medicine, vol. 14, no. 2, pp. 45–53, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. I. G. Onyango, J. Lu, M. Rodova, E. Lezi, A. B. Crafter, and R. H. Swerdlow, “Regulation of neuron mitochondrial biogenesis and relevance to brain health,” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 228–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. M. I. Rodríguez, G. Escames, L. C. López et al., “Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice,” Experimental Gerontology, vol. 43, no. 8, pp. 749–756, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Carretero, G. Escames, L. C. López et al., “Long-term melatonin administration protects brain mitochondria from aging,” Journal of Pineal Research, vol. 47, no. 2, pp. 192–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Xu, C. Shi, Q. Li, J. Wu, E. L. Forster, and D. T. Yew, “Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice,” Journal of Bioenergetics and Biomembranes, vol. 39, no. 2, pp. 195–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. F. Tian, T. J. Tong, Z. Y. Zhang, M. A. McNutt, and X. W. Liu, “Age-dependent down-regulation of mitochondrial 8-oxoguanine dna glycosylase in sam-p/8 mouse brain and its effect on brain aging,” Rejuvenation Research, vol. 12, no. 3, pp. 209–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. T. Nishikawa, J. A. Takahashi, Y. Fujibayashi et al., “An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model,” Neuroscience Letters, vol. 254, no. 2, pp. 69–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Rodríguez-Calvo, M. Jové, T. Coll et al., “PGC-1β down-regulation is associated with reduced ERRα activity and MCAD expression in skeletal muscle of senescence-accelerated mice,” Journals of Gerontology, vol. 61, no. 8, pp. 773–780, 2006. View at Scopus
  129. A. Salminen, K. Kaarniranta, A. Haapasalo, H. Soininen, and M. Hiltunen, “AMP-activated protein kinase: a potential player in Alzheimer's disease,” Journal of Neurochemistry, vol. 118, no. 4, pp. 460–474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. V. Vingtdeux, P. Davies, D. W. Dickson, and P. Marambaud, “AMPK is abnormally activated in tangle-and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies,” Acta Neuropathologica, vol. 121, no. 3, pp. 337–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. J. S. Won, Y. B. Im, J. Kim, A. K. Singh, and I. Singh, “Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis,” Biochemical and Biophysical Research Communications, vol. 399, no. 4, pp. 487–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. J. J. Pei, C. Björkdahl, H. Zhang, X. Zhou, and B. Winblad, “p70 S6 kinase and tau in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 14, no. 4, pp. 385–392, 2008. View at Scopus
  133. J. J. Pei and J. Hugon, “mTOR-dependent signalling in Alzheimer's disease,” Journal of Cellular and Molecular Medicine, vol. 12, no. 6B, pp. 2525–2532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. B. Dasgupta and J. Milbrandt, “Resveratrol stimulates AMP kinase activity in neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7217–7222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. N. L. Price, A. P. Gomes, A. J. Y. Ling, et al., “SIRT1 is required for AMPK activation and the beneficial effects of RSV on mitochondrial function,” Cell Metabolism, vol. 15, no. 5, pp. 675–690, 2012.
  136. S. J. Park, F. Ahmad, A. Philp, et al., “RSV ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases,” Cell, vol. 148, no. 3, pp. 421–433, 2012.
  137. E. Morselli, L. Galluzzi, O. Kepp et al., “Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol,” Aging, vol. 1, no. 12, pp. 961–970, 2009. View at Scopus
  138. E. Morselli, M. C. Maiuri, M. Markaki et al., “Caloric restriction and resveratrol promote longevity through the sirtuin-1-dependent induction of autophagy,” Cell Death and Disease, vol. 1, no. 1, article e10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. H. Chen and D. C. Chan, “Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases,” Human molecular genetics, vol. 18, no. 2, pp. R169–R176, 2009. View at Scopus
  140. M. J. Barsoum, H. Yuan, A. A. Gerencser et al., “Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons,” EMBO Journal, vol. 25, no. 16, pp. 3900–3911, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Chang, T. R. Ma, R. D. Miranda, M. E. Balestra, R. W. Mahley, and Y. Huang, “Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18694–18699, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. R. K. Dagda, S. J. Cherra, S. M. Kulich, A. Tandon, D. Park, and C. T. Chu, “Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13843–13855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. X. Wang, B. Su, L. Zheng, G. Perry, M. A. Smith, and X. Zhu, “The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease,” Journal of Neurochemistry, vol. 109, supplement 1, pp. 153–159, 2009. View at Publisher · View at Google Scholar · View at Scopus