About this Journal Submit a Manuscript Table of Contents
ISRN Cell Biology
Volume 2012 (2012), Article ID 927064, 11 pages
http://dx.doi.org/10.5402/2012/927064
Review Article

Autophagy Mechanism, Regulation, Functions, and Disorders

Department of Pediatrics, University of California at Irvine, 2501 Hewitt Hall, Irvine, CA 92697, USA

Received 31 May 2012; Accepted 30 July 2012

Academic Editors: D. Arnoult, D. Bouvard, and A. Chiarini

Copyright © 2012 Mallikarjun Badadani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. H. Baehrecke, “Autophagy: dual roles in life and death?” Nature Reviews Molecular Cell Biology, vol. 6, no. 6, pp. 505–510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. L. Edinger and C. B. Thompson, “Death by design: apoptosis, necrosis and autophagy,” Current Opinion in Cell Biology, vol. 16, no. 6, pp. 663–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Kondo, T. Kanzawa, R. Sawaya, and S. Kondo, “The role of autophagy in cancer development and response to therapy,” Nature Reviews Cancer, vol. 5, no. 9, pp. 726–734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Yorimitsu and D. J. Klionsky, “Autophagy: molecular machinery for self-eating,” Cell Death and Differentiation, vol. 12, no. 2, pp. 1542–1552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. J. Klionsky, “The molecular machinery of autophagy: unanswered questions,” Journal of Cell Science, vol. 118, no. 1, pp. 7–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Suzuki and Y. Ohsumi, “Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae,” FEBS Letters, vol. 581, no. 11, pp. 2156–2161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Levine and G. Kroemer, “Autophagy in the pathogenesis of disease,” Cell, vol. 132, no. 1, pp. 27–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Klionsky and S. D. Emr, “Autophagy as a regulated pathway of cellular degradation,” Science, vol. 290, no. 5497, pp. 1717–1721, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Cuervo, “Autophagy: in sickness and in health,” Trends in Cell Biology, vol. 14, no. 2, pp. 70–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. T. Chu, “Eaten alive: autophagy and neuronal cell death after hypoxia-ischemia,” American Journal of Pathology, vol. 172, no. 2, pp. 284–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Meléndez, Z. Tallóczy, M. Seaman, E. L. Eskelinen, D. H. Hall, and B. Levine, “Autophagy genes are essential for dauer development and life-span extension in C. elegans,” Science, vol. 301, no. 5638, pp. 1387–1391, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Yorimitsu, S. Zaman, J. R. Broach, and D. J. Klionsky, “Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 18, no. 10, pp. 4180–4189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Noda and Y. Ohsumi, “Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast,” Journal of Biological Chemistry, vol. 273, no. 7, pp. 3963–3966, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Liang, S. H. Shao, Z. X. Xu et al., “The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis,” Nature Cell Biology, vol. 9, no. 2, pp. 218–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Lippai, G. Csikós, P. Maróy, T. Lukácsovich, G. Juhász, and M. Sass, “SNF4Aγ, the Drosophila AMPK γ subunit is required for regulation of developmental and stress-induced autophagy,” Autophagy, vol. 4, no. 4, pp. 476–486, 2008. View at Scopus
  16. P. Syntichaki, K. Troulinaki, and N. Tavernarakis, “eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans,” Nature, vol. 445, no. 7130, pp. 922–926, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Hansen, S. Taubert, D. Crawford, N. Libina, S. J. Lee, and C. Kenyon, “Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans,” Aging Cell, vol. 6, no. 1, pp. 95–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Z. Pan, J. E. Palter, A. N. Rogers et al., “Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans,” Aging Cell, vol. 6, no. 1, pp. 111–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Tavernarakis, “Ageing and the regulation of protein synthesis: a balancing act?” Trends in Cell Biology, vol. 18, no. 5, pp. 228–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Scherz-Shouval and Z. Elazar, “ROS, mitochondria and the regulation of autophagy,” Trends in Cell Biology, vol. 17, no. 9, pp. 422–427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Codogno and A. J. Meijer, “Autophagy and signaling: their role in cell survival and cell death,” Cell Death and Differentiation, vol. 12, supplement 2, pp. 1509–1518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Crighton, S. Wilkinson, J. O'Prey et al., “DRAM, a p53-induced modulator of autophagy, is critical for apoptosis,” Cell, vol. 126, no. 1, pp. 121–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Tasdemir, M. C. Maiuri, L. Galluzzi et al., “Regulation of autophagy by cytoplasmic p53,” Nature Cell Biology, vol. 10, no. 6, pp. 676–687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kumar and D. Cakouros, “Transcriptional control of the core cell-death machinery,” Trends in Biochemical Sciences, vol. 29, no. 4, pp. 193–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Polager, M. Ofir, and D. Ginsberg, “E2F1 regulates autophagy and the transcription of autophagy genes,” Oncogene, vol. 27, no. 35, pp. 4860–4864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Zhao, J. J. Brault, A. Schild et al., “FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells,” Cell Metabolism, vol. 6, no. 6, pp. 472–483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. I. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, “Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase,” Nature, vol. 403, no. 6771, pp. 795–800, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. H. A. Tissenbaum and L. Guarente, “Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans,” Nature, vol. 410, no. 6825, pp. 227–230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Kaeberlein, M. McVey, and L. Guarente, “The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms,” Genes and Development, vol. 13, no. 19, pp. 2570–2580, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. J. G. Wood, B. Rogina, S. Lavu et al., “Sirtuin activators mimic caloric restriction and delay ageing in metazoans,” Nature, vol. 430, no. 7000, pp. 686–689, 2004. View at Scopus
  31. H. L. In, L. Cao, R. Mostoslavsky et al., “A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3374–3379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Massey, C. Zhang, and A. Cuervo, “Chaperone-mediated autophagy in aging and disease,” Current Topics in Developmental Biology, vol. 73, pp. 205–235, 2006.
  33. J. F. Dice, “Peptide sequences that target cytosolic proteins for lysosomal proteolysis,” Trends in Biochemical Sciences, vol. 15, no. 8, pp. 305–309, 1990. View at Scopus
  34. H. L. Chiang, S. R. Terlecky, C. P. Plant, and J. F. Dice, “A role for a 70-kilodaton heat shock protein in lysosomal degradation of intracellular proteins,” Science, vol. 246, no. 4928, pp. 382–385, 1989. View at Scopus
  35. A. L. Kovács, Z. Pálfia, G. Réz, T. Vellai, and J. Kovács, “Sequestration revisited: Integrating traditional electron microscopy, de novo assembly and new results,” Autophagy, vol. 3, no. 6, pp. 655–662, 2007. View at Scopus
  36. A. Majesk and J. Dice, “Mechanisms of chaperone-mediated autophagy,” The International Journal of Biochemistry & Cell Biology, vol. 36, pp. 2435–2444, 2004.
  37. A. M. Cuervo and J. F. Dice, “A receptor for the selective uptake and degradation of proteins by lysosomes,” Science, vol. 273, no. 5274, pp. 501–503, 1996. View at Scopus
  38. N. Salvador, C. Aguado, M. Horst, and E. Knecht, “Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state,” Journal of Biological Chemistry, vol. 275, no. 35, pp. 27447–27456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. F. A. Agarraberes, S. R. Terlecky, and J. F. Dice, “An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation,” Journal of Cell Biology, vol. 137, no. 4, pp. 825–834, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Terlecky and J. Dice, “Polypeptide import and degradation by isolated lysosomes,” The Journal of Biological Chemistry, vol. 268, pp. 23490–23495, 1993.
  41. F. Aniento, A. G. Papavassiliou, E. Knecht, and E. Roche, “Selective uptake and degradation of c-Fos and v-Fos by rat liver lysosomes,” FEBS Letters, vol. 390, no. 1, pp. 47–52, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. S. S. Wing, H. L. Chiang, A. L. Goldberg, and J. F. Dice, “Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats,” Biochemical Journal, vol. 275, no. 1, pp. 165–169, 1991. View at Scopus
  43. A. M. Cuervo, E. Knecht, S. R. Terlecky, and J. F. Dice, “Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation,” American Journal of Physiology, vol. 269, no. 5, pp. C1200–C1208, 1995. View at Scopus
  44. R. Kiffin, C. Christian, E. Knecht, and A. M. Cuervo, “Activation of chaperone-mediated autophagy during oxidative stress,” Molecular Biology of the Cell, vol. 15, no. 11, pp. 4829–4840, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. A. M. Cuervo, H. Hildebrand, E. M. Bomhard, and J. F. Dice, “Direct lysosomal uptake of α2-microglobulin contributes to chemically induced nephropathy,” Kidney International, vol. 55, no. 2, pp. 529–545, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  47. J. C. Reed, “Mechanisms of apoptosis,” The American Journal of Pathology, vol. 39, pp. 1415–1430, 2000.
  48. H. S. Kim, J. W. Lee, Y. H. Soung et al., “Inactivating mutations of caspase-8 gene in colorectal carcinomas,” Gastroenterology, vol. 125, no. 3, pp. 708–715, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. J. W. Lee, Y. H. Soung, S. Y. Kim et al., “Inactivating mutations of proapoptotic Bad gene in human colon cancers,” Carcinogenesis, vol. 25, no. 8, pp. 1371–1376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. S. H. Lee, M. S. Shin, W. S. Park et al., “Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer,” Oncogene, vol. 18, no. 25, pp. 3754–3760, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. M. S. Shin, H. S. Kim, C. S. Kang et al., “Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas,” Blood, vol. 99, no. 11, pp. 4094–4099, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. M. R. Kang, M. S. Kim, J. E. Oh et al., “Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATGI2 in gastric and colorectal cancers with microsatellite instability,” Journal of Pathology, vol. 217, no. 5, pp. 702–706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. M. S. Kim, E. G. Jeong, C. H. Ahn, S. S. Kim, S. H. Lee, and N. J. Yoo, “Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability,” Human Pathology, vol. 39, no. 7, pp. 1059–1063, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. W. Lee, E. G. Jeong, S. H. Lee, N. J. Yoo, and S. H. Lee, “Somatic mutations of BECN1, an autophagy-related gene, in human cancers,” APMIS, vol. 115, no. 6, pp. 750–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. V. M. Aita, X. H. Liang, V. V. V. S. Murty et al., “Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21,” Genomics, vol. 59, no. 1, pp. 59–65, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Marx, “Autophagy: is it cancer's friend or foe?” Science, vol. 312, no. 5777, pp. 1160–1161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Thorburn, F. Moore, A. Rao et al., “Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells,” Molecular Biology of the Cell, vol. 16, no. 3, pp. 1189–1199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. K. R. Mills, M. Reginato, J. Debnath, B. Queenan, and J. S. Brugge, “Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 10, pp. 3438–3443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. E. M. Hammond, C. L. Brunet, G. D. Johnson et al., “Homology between a human apoptosis specific protein and the product of APG5, a gene involved in autophagy in yeast,” FEBS Letters, vol. 425, no. 3, pp. 391–395, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. D. J. Klionsky, “Autophagy: from phenomenology to molecular understanding in less than a decade,” Nature Reviews Molecular Cell Biology, vol. 8, no. 11, pp. 931–937, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Tanida, E. Tanida-Miyake, M. Komatsu, T. Ueno, and E. Kominami, “Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p,” Journal of Biological Chemistry, vol. 277, no. 16, pp. 13739–13744, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Yousefi, R. Perozzo, I. Schmid et al., “Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis,” Nature Cell Biology, vol. 8, no. 10, pp. 1124–1132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Boya, R. A. Gonzalez-Polo, N. Casares, et al., “Inhibition of macroautophagy triggers apoptosis,” Molecular and Cellular Biology, vol. 25, pp. 1025–1040, 2005.
  64. J. J. Lum, D. E. Bauer, M. Kong et al., “Growth factor regulation of autophagy and cell survival in the absence of apoptosis,” Cell, vol. 120, no. 2, pp. 237–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Yue, S. Jin, C. Yang, A. J. Levine, and N. Heintz, “Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 15077–15082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Qu, J. Yu, G. Bhagat, et al., “Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene,” The Journal of Clinical Investigation, vol. 112, pp. 1809–1820, 2003.
  67. Y. Kondo, T. Kanzawa, R. Sawaya, and S. Kondo, “The role of autophagy in cancer development and response to therapy,” Nature Reviews Cancer, vol. 5, no. 9, pp. 726–734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. Feng, H. Zhang, A. J. Levine, and S. Jin, “The coordinate regulation of the p53 and mTOR pathways in cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8204–8209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Arico, A. Petiot, C. Bauvy et al., “The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway,” Journal of Biological Chemistry, vol. 276, no. 38, pp. 35243–35246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Pattingre, A. Tassa, X. Qu et al., “Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy,” Cell, vol. 122, no. 6, pp. 927–939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Yu, F. Wan, S. Dutta et al., “Autophagic programmed cell death by selective catalase degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 4952–4957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Shintani and D. J. Klionsky, “Autophagy in health and disease: a double-edged sword,” Science, vol. 306, no. 5698, pp. 990–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Mizushima, A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi, “In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker,” Molecular Biology of the Cell, vol. 15, no. 3, pp. 1101–1111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Kaneda, K. Sugie, A. Yamamoto et al., “A novel form of autophagic vacuolar myopathy with late-onset and multiorgan involvement,” Neurology, vol. 61, no. 1, pp. 128–131, 2003. View at Scopus
  75. I. Nishino, M. C. V. Malicdan, K. Murayama, I. Nonaka, Y. K. Hayashi, and S. Noguchi, “Molecular pathomechanism of distal myopathy with rimmed vacuoles,” Acta Myologica, vol. 24, no. 2, pp. 80–83, 2005. View at Scopus
  76. I. Nonaka, N. Sunohara, S. Ishiura, and E. Satoyoshi, “Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation,” Journal of the Neurological Sciences, vol. 51, no. 1, pp. 141–155, 1981. View at Publisher · View at Google Scholar · View at Scopus
  77. M. M. Hippert, P. S. O'Toole, and A. Thorburn, “Autophagy in cancer: good, bad, or both?” Cancer Research, vol. 66, no. 19, pp. 9349–9351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Yan, M. Tanaka, K. Sugie et al., “A new congenital form of X-linked autophagic vacuolar myopathy,” Neurology, vol. 65, no. 7, pp. 1132–1134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. M. C. V. Malicdan, S. Noguchi, and I. Nishino, “Autophagy in a mouse model of distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy,” Autophagy, vol. 3, no. 4, pp. 396–398, 2007. View at Scopus
  80. I. Nishino, J. Fu, K. Tanji et al., “Primary LAMP-2 deficiency causes X-linked vacoular cardiomyopathy and myopathy (Danon disease),” Nature, vol. 406, no. 6798, pp. 906–910, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. M. J. Danon, S. J. Oh, S. DiMauro, et al., “Lysosomal glycogen storage disease with normal acid maltase,” Neurology, vol. 31, no. 1, pp. 51–57, 1981. View at Scopus
  82. I. Nishino, “Autophagic vacuolar myopathies,” Current Neurology and Neuroscience Reports, vol. 3, pp. 64–69, 2003.
  83. J. F. Dice, “Chaperone-mediated autophagy,” Autophagy, vol. 3, no. 4, pp. 295–299, 2007. View at Scopus
  84. A. C. Massey, C. Zhang, and A. M. Cuervo, “Chaperone-mediated autophagy in aging and disease,” Current Topics in Developmental Biology, vol. 73, pp. 205–235, 2006.
  85. Y. Tanaka, G. Guhde, A. Suter et al., “Accumulation of autophagic vacuoles and cardiomyopathy LAMP-2-deficient mice,” Nature, vol. 406, no. 6798, pp. 902–906, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Kalimo, M. L. Savontaus, H. Lang et al., “X-linked myopathy with excessive autophagy: a new hereditary muscle disease,” Annals of Neurology, vol. 23, no. 3, pp. 258–265, 1988. View at Scopus
  87. J. P. Louboutin, M. Villanova, B. Lucas-Héron, and M. Fardeau, “X-linked vacuolated myopathy: membrane attack complex deposition on muscle fiber membranes with calcium accumulation on sarcolemma,” Annals of Neurology, vol. 41, no. 1, pp. 117–120, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Villanova, J. P. Louboutin, D. Chateau et al., “X-linked vacuolated myopathy: complement membrane attack complex on surface membrane of injured muscle fibers,” Annals of Neurology, vol. 37, no. 5, pp. 637–645, 1995. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Yan, M. Tanaka, K. Sugie et al., “A new congenital form of X-linked autophagic vacuolar myopathy,” Neurology, vol. 65, no. 7, pp. 1132–1134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Raben, P. Plotz, and B. J. Byrne, “Acid α-glucosidase deficiency (glycogenosis type II, pompe disease),” Current Molecular Medicine, vol. 2, no. 2, pp. 145–166, 2002. View at Scopus
  91. J. Smith, H. Zellweger, and A. K. Afifi, “Muscular form of glycogenosis, type II (Pompe),” Neurology, vol. 17, no. 6, pp. 537–549, 1967. View at Scopus
  92. M. L. C. Hagemans, L. P. F. Winkel, P. A. Van Doorn et al., “Clinical manifestation and natural course of late-onset Pompe's disease in 54 Dutch patients,” Brain, vol. 128, no. 3, pp. 671–677, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. M. C. Dalakas, “Sporadic inclusion body myositis—diagnosis, pathogenesis and therapeutic strategies,” Nature Clinical Practice Neurology, vol. 2, no. 8, pp. 437–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. V. Askanas and W. K. Engel, “Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer's and Parkinson's disease brains,” Acta Neuropathologica, vol. 116, no. 6, pp. 583–595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. V. Askanas, W. K. Engel, and A. Nogalska, “Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation: mini-symposium: protein aggregate myopathies,” Brain Pathology, vol. 19, no. 3, pp. 493–506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Tsuruta, A. Furuta, K. Furuta, T. Yamada, J. I. Kira, and T. Iwaki, “Expression of the lysosome-associated membrane proteins in myopathies with rimmed vacuoles,” Acta Neuropathologica, vol. 101, no. 6, pp. 579–584, 2001. View at Scopus
  97. A. M. Cuervo, L. Stafanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, “Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy,” Science, vol. 305, no. 5688, pp. 1292–1295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. A. M. Cuervo, S. R. Terlecky, J. F. Dice, and E. Knecht, “Selective binding and uptake of ribonuclease A and glyceraldehyde-3- phosphate dehydrogenase by isolated rat liver lysosomes,” Journal of Biological Chemistry, vol. 269, no. 42, pp. 26374–26380, 1994. View at Scopus
  99. A. M. Cuervo, J. F. Dice, and E. Knecht, “A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins,” Journal of Biological Chemistry, vol. 272, no. 9, pp. 5606–5615, 1997. View at Publisher · View at Google Scholar · View at Scopus
  100. F. Aniento, E. Roche, A. M. Cuervo, and E. Knecht, “Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes,” Journal of Biological Chemistry, vol. 268, no. 14, pp. 10463–10470, 1993. View at Scopus
  101. W. K. Engel and V. Askanas, “Inclusion-body myositis: clinical, diagnostic, and pathologic aspects,” Neurology, vol. 66, no. 2, pp. S20–S29, 2006. View at Scopus
  102. T. Kumamoto, H. Ueyama, H. Tsumura, I. Toyoshima, and T. Tsuda, “Expression of lysosome-related proteins and genes in the skeletal muscles of inclusion body myositis,” Acta Neuropathologica, vol. 107, no. 1, pp. 59–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Bjørkøy, T. Lamark, A. Brech et al., “p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death,” Journal of Cell Biology, vol. 171, no. 4, pp. 603–614, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. M. L. Seibenhener, J. R. Babu, T. Geetha, H. C. Wong, N. R. Krishna, and M. W. Wooten, “Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation,” Molecular and Cellular Biology, vol. 24, no. 18, pp. 8055–8068, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Nogalska, C. Terracciano, C. D'Agostino, W. King Engel, and V. Askanas, “p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis,” Acta Neuropathologica, vol. 118, no. 3, pp. 407–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. J. N. Keller, K. B. Hanni, and W. R. Markesbery, “Impaired proteasome function in Alzheimer’s disease,” Journal of Neurochemistry, vol. 75, pp. 436–439, 2000.
  107. W. X. Ding and X. M. Yin, “Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome,” Autophagy, vol. 4, no. 2, pp. 141–150, 2008. View at Scopus
  108. S. Oddo, “The ubiquitin-proteasome system in Alzheimer’s disease,” Journal of Cellular and Molecular Medicine, vol. 12, pp. 363–373, 2008.
  109. M. Martinez-Vicente and A. M. Cuervo, “Autophagy and neurodegeneration: when the cleaning crew goes on strike,” Lancet Neurology, vol. 6, no. 4, pp. 352–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. R. A. Nixon, “Autophagy, amyloidogenesis and Alzheimer disease,” Journal of Cell Science, vol. 120, no. 23, pp. 4081–4091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. J. J. Shacka, K. A. Roth, and J. Zhang, “The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy,” Frontiers in Bioscience, vol. 13, no. 2, pp. 718–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. R. A. Nixon, “Autophagy in neurodegenerative disease: friend, foe or turncoat?” Trends in Neurosciences, vol. 29, no. 9, pp. 528–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Badadani, A. Nalbandian, G. D. Watts et al., “VCP associated inclusion body myopathy and paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease,” PLoS ONE, vol. 5, no. 10, article e13183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. W. Bursch, “The autophagosomal-lysosomal compartment in programmed cell death,” Cell Death and Differentiation, vol. 8, no. 6, pp. 569–581, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. P. O. Seglen and P. B. Gordon, “3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 6, pp. 1889–1892, 1982. View at Scopus
  116. E. J. Bowman, A. Siebers, and K. Altendorf, “Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 21, pp. 7972–7976, 1988. View at Scopus
  117. K. Yamanaka, Y. Sasagawa, and T. Ogura, “Recent advances in p97/VCP/Cdc48 cellular functions,” Biochimica et Biophysica Acta, vol. 1823, no. 1, pp. 130–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. R. B. Shirley, I. Kaddour-Djebbar, D. M. Patel, V. Lakshmikanthan, R. W. Lewis, and M. V. Kumar, “Combination of proteasomal inhibitors lactacystin and MG132 induced synergistic apoptosis in prostate cancer cells,” Neoplasia, vol. 7, no. 12, pp. 1104–1111, 2005. View at Publisher · View at Google Scholar · View at Scopus