About this Journal Submit a Manuscript Table of Contents
ISRN Cell Biology
Volume 2012 (2012), Article ID 979480, 7 pages
http://dx.doi.org/10.5402/2012/979480
Review Article

Hematopoietic Microenvironment in the Fetal Liver: Roles of Different Cell Populations

Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia

Received 10 September 2012; Accepted 2 October 2012

Academic Editors: E. Meacci, A. A. Minin, and C. C. Uphoff

Copyright © 2012 Olga V. Payushina. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Sasaki and Y. Sonoda, “Histometrical and three-dimensional analyses of liver hematopoiesis in the mouse embryo,” Archives of Histology and Cytology, vol. 63, no. 2, pp. 137–146, 2000. View at Scopus
  2. Y. Guo, X. Zhang, J. Huang et al., “Relationships between hematopoiesis and hepatogenesis in the midtrimester fetal liver characterized by dynamic transcriptomic and proteomic profiles,” PLoS ONE, vol. 4, no. 10, article e7641s, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. D. Terrace, I. S. Currie, D. C. Hay et al., “Progenitor cell characterization and location in the developing human liver,” Stem Cells and Development, vol. 16, no. 5, pp. 771–778, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Fukumoto, “Possible developmental interactions of hematopoietic cells and hepatocytes in fetal rat liver,” Biomedical Research, vol. 13, no. 6, pp. 385–413, 1992. View at Scopus
  5. J. D. P. Ayres-Silva, P. P. D. A. Manso, M. R. D. C. Madeira, M. Pelajo-Machado, and H. L. Lenzi, “Sequential morphological characteristics of murine fetal liver hematopoietic microenvironment in Swiss Webster mice,” Cell and Tissue Research, vol. 344, no. 3, pp. 455–469, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. K. U. Eckardt, “Erythropoietin production in liver and kidneys,” Current Opinion in Nephrology and Hypertension, vol. 5, pp. 28–34, 1996.
  7. D. Sugiyama, K. Kulkeaw, C. Mizuochi, Y. Horio, and S. Okayama, “Hepatoblasts comprise a niche for fetal liver erythropoiesis through cytokine production,” Biochemical and Biophysical Research Communications, vol. 410, no. 2, pp. 301–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Emura, M. Sekiya, and Y. Ohnishi, “Ultrastructural identification of the hemopoietic inductive microenvironment in the human embryonic liver,” Archivum Histologicum Japonicum, vol. 47, no. 1, pp. 95–112, 1984. View at Scopus
  9. A. Aiuti, C. Cicchini, S. Bernardini et al., “Hematopoietic support and cytokine expression of murine-stable hepatocyte cell lines (MMH),” Hepatology, vol. 28, no. 6, pp. 1645–1654, 1998. View at Scopus
  10. M. Nanno, M. Hata, H. Doi et al., “Stimulation of in vitro hematopoiesis by a murine fetal hepatocyte clone through cell-cell contact,” Journal of Cellular Physiology, vol. 160, no. 3, pp. 445–454, 1994. View at Scopus
  11. A. Corlu, I. Lamy, G. P. Ilyin et al., “Hematopoiesis-promoting activity of rat liver biliary epithelial cells: Involvement of a cell surface molecule, liver-regulating protein,” Experimental Hematology, vol. 26, no. 5, pp. 382–394, 1998. View at Scopus
  12. K. Sasaki and H. Iwatsuki, “Origin and fate of the central macrophages of erythroblastic islands in the fetal and neonatal mouse liver,” Microscopy Research and Technique, vol. 39, no. 5, pp. 398–405, 1997. View at Scopus
  13. D. Li, G. Y. Wang, Z. F. Liu, Y. X. Shi, H. Zhang, and Z. L. Bai, “Macrophage-associated erythropoiesis and lymphocytopoiesis in mouse fetal liver: ultrastructural and ISH analysis,” Cell Biology International, vol. 28, no. 6, pp. 457–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Soni, S. Bala, B. Gwynn, K. E. Sahr, L. L. Peters, and M. Hanspal, “Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion,” Journal of Biological Chemistry, vol. 281, no. 29, pp. 20181–20189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Isern, S. T. Fraser, Z. He, and M. H. Baron, “The fetal liver is a niche for maturation of primitive erythroid cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 18, pp. 6662–6667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Schulz, E. Gomez Perdiguero, L. Chorro, et al., “A lineage of myeloid cells independent of Myb and hematopoietic stem cells,” Science, vol. 336, pp. 86–90, 2012.
  17. P. W. Bankston and R. M. Pino, “The development of the sinusoids of fetal rat liver: morphology of endothelial cells, Kupffer cells, and the transmural migration of blood cells into the sinusoids,” American Journal of Anatomy, vol. 159, no. 1, pp. 1–15, 1980. View at Scopus
  18. W. B. Lee, S. K. Erm, K. Y. Kim, and R. P. Becker, “Emperipolesis of erythroblasts within Kupffer cells during hepatic hemopoiesis in human fetus,” The Anatomical Record, vol. 256, pp. 158–164, 1999.
  19. P. Paul, S. A. Rothmann, J. T. McMahon, and A. S. Gordon, “Erythropoietin secretion by isolated rat Kupffer cells,” Experimental Hematology, vol. 12, no. 11, pp. 825–830, 1984. View at Scopus
  20. G. Ramadori and B. Saile, “Mesenchymal cells in the liver—one cell type or two?” Liver, vol. 22, no. 4, pp. 283–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Sato, S. Suzuki, and H. Senoo, “Hepatic stellate cells: unique characteristics in cell biology and phenotype,” Cell Structure and Function, vol. 28, no. 2, pp. 105–112, 2003. View at Scopus
  22. C. Guyot, S. Lepreux, C. Combe et al., “Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 2, pp. 135–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. P. Kiassov, P. Van Eyken, J. F. Van Pelt et al., “Desmin expressing nonhematopoietic liver cells during rat liver development: an immunohistochemical and morphometric study,” Differentiation, vol. 59, no. 4, pp. 253–258, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Kubota, H. L. Yao, and L. M. Reid, “Identification and characterization of vitamin A-storing cells in fetal liver: implications for functional importance of hepatic stellate cells in liver development and hematopoiesis,” Stem Cells, vol. 25, no. 9, pp. 2339–2349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Villeneuve, F. Pelluard-Nehme, C. Combe et al., “Immunohistochemical study of the phenotypic change of the mesenchymal cells during portal tract maturation in normal and fibrous (ductal plate malformation) fetal liver,” Comparative Hepatology, vol. 8, article 5, 2009.
  26. C. K. C. Loo and X. J. Wu, “Origin of stellate cells from submesothelial cells in a developing human liver,” Liver International, vol. 28, no. 10, pp. 1437–1445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Samama and N. Boehm, “Reelin immunoreactivity in lymphatics and liver during development and adult life,” The Anatomical Record A, vol. 285, pp. 595–599, 2005.
  28. H. Enzan, H. Himeno, M. Hiroi, H. Kiyoku, T. Saibara, and S. Onishi, “Development of hepatic sinusoidal structure with special reference to the Ito cells,” Microscopy Research and Technique, vol. 39, pp. 336–349, 1997.
  29. K. Asahina, S. Y. Tsai, P. Li et al., “Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development,” Hepatology, vol. 49, no. 3, pp. 998–1011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. S. Lim, K. A. Kim, J. O. Jung et al., “Modulation of cytokeratin expression during in vitro cultivation of human hepatic stellate cells: evidence of transdifferentiation from epithelial to mesenchymal phenotype,” Histochemistry and Cell Biology, vol. 118, no. 2, pp. 127–136, 2002. View at Scopus
  31. K. Fujio, R. P. Evarts, Z. Hu, E. R. Marsden, and S. S. Thorgeirsson, “Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat,” Laboratory Investigation, vol. 70, no. 4, pp. 511–516, 1994. View at Scopus
  32. J. Dudas, T. Mansuroglu, D. Batusic, B. Saile, and G. Ramadori, “Thy-1 is an in vivo and in vitro marker of liver myofibroblasts,” Cell and Tissue Research, vol. 329, no. 3, pp. 503–514, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Dudas, T. Mansuroglu, D. Batusic, and G. Ramadori, “Thy-1 is expressed in myofibroblasts but not found in hepatic stellate cells following liver injury,” Histochemistry and cell biology, vol. 131, no. 1, pp. 115–127, 2009. View at Scopus
  34. T. Knittel, D. Kobold, B. Salle et al., “Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential,” Gastroenterology, vol. 117, no. 5, pp. 1205–1221, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Kobold, A. Grundmann, F. Piscaglia et al., “Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts,” Journal of Hepatology, vol. 36, no. 5, pp. 607–613, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Timens and W. A. Kamps, “Hemopoiesis in human fetal and embryonic liver,” Microscopy Research and Technique, vol. 39, pp. 387–397, 1997.
  37. P. S. Amenta and D. Harrison, “Expression and potential role of the extracellular matrix in hepatic ontogenesis: a review,” Microscopy Research and Technique, vol. 39, pp. 372–386, 1997.
  38. R. Weinstein, M. A. Riordan, K. Wenc, S. Kreczko, M. Zhou, and N. Dainiak, “Dual role of fibronectin in hematopoietic differentiation,” Blood, vol. 73, no. 1, pp. 111–116, 1989. View at Scopus
  39. T. Yokota, K. Oritani, H. Mitsui et al., “Growth-supporting activities of fibronectin on hematopoietic stem/progenitor cells in vitro and in vivo: structural requirement for fibronectin activities of CS1 and cell-binding domains,” Blood, vol. 91, no. 9, pp. 3263–3272, 1998. View at Scopus
  40. D. Tamiolakis, I. Venizelos, S. Nikolaidou, and T. Jivanakis, “Normal development of fetal hepatic haematopoiesis during the second trimester of gestation is upregulated by fibronectin expression in the stromal cells of the portal triads,” Revista Espanola de Enfermedades Digestivas, vol. 99, no. 10, pp. 576–580, 2007. View at Scopus
  41. P. Charbord, J. P. Rémy-Martin, E. Tamayo, G. Bernard, A. Keating, and B. Péault, “Analysis of the microenvironment necessary for engraftment: role of the vascular smooth muscle-like stromal cells,” Journal of Hematotherapy and Stem Cell Research, vol. 9, no. 6, pp. 935–943, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. J. E. Dennis and P. Charbord, “Origin and differentiation of human and murine stroma,” Stem Cells, vol. 20, no. 3, pp. 205–214, 2002. View at Scopus
  43. L. Sensebe, M. Deschaseaux, J. Li, P. Herve, and P. Charbord, “The broad spectrum of cytokine gene expression by myoid cells from the human marrow microenvironment,” Stem Cells, vol. 15, no. 2, pp. 133–143, 1997. View at Scopus
  44. J. Gerhart, B. Bast, C. Neely et al., “MyoD-positive myoblasts are present in mature fetal organs lacking skeletal muscle,” Journal of Cell Biology, vol. 155, no. 4, pp. 381–391, 2001. View at Scopus
  45. S. N. Gornostaeva, A. A. Rzhaninova, and D. V. Gol'dstein, “Myogenesis in hemopoietic tissue mesenchymal stem cell culture,” Bulletin of Experimental Biology and Medicine, vol. 141, no. 4, pp. 493–499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. O. N. Sheveleva, O. V. Payushina, M. N. Kozhevnikova, N. N. Butorina, and V. I. Starostin, “Spontaneous and induced myogenesis in cell cultures from rat fetal liver,” Cell and Tissue Biology, vol. 5, pp. 551–559, 2011.
  47. J. Henningsen, K. T. G. Rigbolt, B. Blagoev, B. K. Pedersen, and I. Kratchmarova, “Dynamics of the skeletal muscle secretome during myoblast differentiation,” Molecular and Cellular Proteomics, vol. 9, no. 11, pp. 2482–2496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Barbera-Guillem, J. M. Arrue, J. Ballesteros, and F. Vidal-Vanaclocha, “Structural changes in endothelial cells of developing rat liver in the transition from fetal to postnatal life,” Journal of Ultrastructure and Molecular Structure Research, vol. 97, no. 1–3, pp. 197–206, 1986. View at Scopus
  49. A. Couvelard, J. Y. Scoazec, M. C. Dauge, A. F. Bringuier, F. Potet, and G. Feldmann, “Structural and functional differentiation of sinusoidal endothelial cells during liver organogenesis in humans,” Blood, vol. 87, no. 11, pp. 4568–4580, 1996. View at Scopus
  50. K. M. Schweitzer, A. M. Dräger, P. Van Der Valk et al., “Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues,” American Journal of Pathology, vol. 148, no. 1, pp. 165–175, 1996. View at Scopus
  51. O. Wittig, J. Paez-Cortez, and J. E. Cardier, “Liver sinusoidal endothelial cells promote B lymphopoiesis from primitive hematopoietic cells,” Stem Cells and Development, vol. 19, no. 3, pp. 341–349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. I. Sawitza, C. Kordes, S. Reister, and D. Häussinger, “The niche of stellate cells within rat liver,” Hepatology, vol. 50, no. 5, pp. 1617–1624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Iwasaki, F. Arai, Y. Kubota, M. Dahl, and T. Suda, “Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver,” Blood, vol. 116, no. 4, pp. 544–553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. Q. Li and L. F. Congoto, “Bovine fetal-liver stromal cells support erythroid colony formation: enhancement by insulin-like growth factor II,” Experimental Hematology, vol. 23, no. 1, pp. 66–73, 1995. View at Scopus
  55. O. Ohneda and V. L. Bautch, “Murine endothelial cells support fetal liver erythropoiesis and myelopoiesis via distinct interactions,” British Journal of Haematology, vol. 98, no. 4, pp. 798–808, 1997. View at Scopus
  56. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. A. J. Friedenstein, U. F. Gorskaja, and N. N. Kulagina, “Fibroblast precursors in normal and irradiated mouse hematopoietic organs,” Experimental Hematology, vol. 4, no. 5, pp. 267–274, 1976. View at Scopus
  58. L. da Silva Meirelles, P. C. Chagastelles, and N. B. Nardi, “Mesenchymal stem cells reside in virtually all post-natal organs and tissues,” Journal of Cell Science, vol. 119, no. 11, pp. 2204–2213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. S. R. M. Versele, R. L. Van Den Heuvel, G. E. R. Schoeters, and O. L. J. Vanderborght, “Proliferation activity of stromal stem cells (CFU-f) from hemopoietic organs of pre- and postnatal mice,” Radiation Research, vol. 111, no. 2, pp. 185–191, 1987. View at Scopus
  60. P. V. Guillot, C. Gotherstrom, J. Chan, H. Kurata, and N. M. Fisk, “Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC,” Stem Cells, vol. 25, no. 3, pp. 646–654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. N. Kozhevnikova, A. S. Mikaelyan, and V. I. Starostin, “Molecular-genetic and immunophenotypic analysis of antigen profile and osteogenic and adipogenic potentials of mesenchymal stromal cells from fetal liver and adult bone marrow in rats,” Cell and Tissue Biology, vol. 3, no. 3, pp. 222–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. P. S. In 't Anker, W. A. Noort, S. A. Scherjon et al., “Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential,” Haematologica, vol. 88, no. 8, pp. 845–852, 2003. View at Scopus
  63. P. V. Guillot, C. De Bari, F. Dell'Accio, H. Kurata, J. Polak, and N. M. Fisk, “Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources,” Differentiation, vol. 76, no. 9, pp. 946–957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Y. Wang, Y. Lan, W. Y. He et al., “Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos,” Blood, vol. 111, no. 4, pp. 2436–2443, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. R. L. Van Den Heuvel, S. R. M. Versele, G. E. R. Schoeters, and O. L. J. Vanderborght, “Stromal stem cells (CFU-f) in yolk sac, liver, spleen and bone marrow of pre- and postnatal mice,” British Journal of Haematology, vol. 66, no. 1, pp. 15–20, 1987. View at Scopus
  66. O. V. Payushina, E. I. Bueverova, G. P. Satdykova, V. I. Starostin, E. I. Domaratskaya, and N. G. Khrushchov, “Comparative investigation of mesenchymal stem cells isolated from the bone marrow and fetal liver of mouse and rat,” Biology Bulletin, vol. 31, no. 6, pp. 546–551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. O. V. Payushina, N. N. Butorina, T. M. Nikonova, M. N. Kozhevnikova, O. N. Sheveleva, and V. I. Starostin, “Clonal growth and differentiation of mesenchymal stromal cells from rat liver at different stages of embryogenesis,” Cell and Tissue Biology, vol. 6, pp. 12–19, 2012.
  68. F. P. Russo, M. R. Alison, B. W. Bigger et al., “The bone marrow functionally contributes to liver fibrosis,” Gastroenterology, vol. 130, no. 6, pp. 1807–1821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. A. S. Krupnick, K. R. Balsara, D. Kreisel et al., “Fetal liver as a source of autologous progenitor cells for perinatal tissue engineering,” Tissue Engineering, vol. 10, no. 5-6, pp. 723–735, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Van Overstraeten-Schlögel, Y. Beguin, and A. Gothot, “Role of stromal-derived factor-1 in the hematopoietic-supporting activity of human mesenchymal stem cells,” European Journal of Haematology, vol. 76, no. 6, pp. 488–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. M. K. Majumdar, M. A. Thiede, J. D. Mosca, M. Moorman, and S. L. Gerson, “Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells,” Journal of Cellular Physiology, vol. 176, pp. 57–66, 1998.
  72. W. Wagner, C. Roderburg, F. Wein et al., “Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors,” Stem Cells, vol. 25, no. 10, pp. 2638–2647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Hu, L. Y. Zhang, G. J. Ma, X. Y. Jiang, and C. H. Zhao, “Phenotypical and biological characteristics of human fetal marrow and liver mesenchymal stem cells,” Zhongguo Shi Yan Xue Ye Xue Za Zhi, vol. 9, pp. 289–293, 2001.
  74. J. Chagraoui, A. Lepage-Noll, A. Anjo, G. Uzan, and P. Charbord, “Fetal liver stroma consists of cells in epithelial-to-mesenchymal transition,” Blood, vol. 101, no. 8, pp. 2973–2982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Zhang, Z. Miao, Z. He, Y. Yang, Y. Wang, and M. Feng, “The existence of epithelial-to-mesenchymal cells with the ability to support hematopoiesis in human fetal liver,” Cell Biology International, vol. 29, no. 3, pp. 213–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Li, Y. W. Zheng, Y. Sano, and H. Taniguchi, “Evidence for mesenchymal-epithelial transition associated with mouse hepatic stem cell differentiation,” PLoS ONE, vol. 6, no. 2, article e17092, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Lambropoulou, D. Tamiolakis, I. Venizelos et al., “Induction of hepatic haematopoiesis with fibronectin expression by EMT stromal cells during the second trimester of development,” Clinical and Experimental Medicine, vol. 7, pp. 115–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. K. S. Ishikawa, T. Masui, K. Ishikawa, and N. Shiojiri, “Immunolocalization of hepatocyte growth factor and its receptor (c-Met) during mouse liver development,” Histochemistry and Cell Biology, vol. 116, no. 5, pp. 453–462, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Schmelzer, L. Zhang, A. Bruce et al., “Human hepatic stem cells from fetal and postnatal donors,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1973–1987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Xiong, T. W. Austin, E. Lagasse et al., “Isolation of human fetal liver progenitors and their enhanced proliferation by three-dimensional coculture with endothelial cells,” Tissue Engineering A, vol. 14, no. 6, pp. 995–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Nagai, K. Terada, G. Watanabe et al., “Differentiation of liver epithelial (stem-like) cells into hepatocytes induced by coculture with hepatic stellate cells,” Biochemical and Biophysical Research Communications, vol. 293, no. 5, pp. 1420–1425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Jodon de Villeroché and D. Brouty-Boyé, “Establishment and characterization of atypical fibroblasts from human adult liver contributing to hepatocyte cord-like arrangement,” Cell Biology International, vol. 32, no. 6, pp. 605–614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Libbrecht, D. Cassiman, V. Desmet, and T. Roskams, “The correlation between portal myofibroblasts and development of intrahepatic bile ducts and arterial branches in human liver,” Liver, vol. 22, no. 3, pp. 252–258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Kinoshita, T. Sekiguchi, M. J. Xu et al., “Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7265–7270, 1999. View at Publisher · View at Google Scholar · View at Scopus