About this Journal Submit a Manuscript Table of Contents
ISRN Cell Biology
Volume 2013 (2013), Article ID 135164, 14 pages
http://dx.doi.org/10.1155/2013/135164
Review Article

Integrin Signaling as a Cancer Drug Target

Division of Toxicology, LACDR, Leiden University, 2333 CC Leiden, The Netherlands

Received 11 June 2013; Accepted 9 July 2013

Academic Editors: D. Arnoult, G. Castoria, K. S. Echtay, and N. Zambrano

Copyright © 2013 Erik H. J. Danen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. O. Hynes, “The extracellular matrix: not just pretty fibrils,” Science, vol. 326, no. 5957, pp. 1216–1219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. O. Hynes, “Integrins: bidirectional, allosteric signaling machines,” Cell, vol. 110, no. 6, pp. 673–687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. R. O. Hynes and Q. Zhao, “The evolution of cell adhesion,” Journal of Cell Biology, vol. 150, no. 2, pp. F89–F95, 2000. View at Scopus
  4. C. Brakebusch and R. Fässler, “The integrin-actin connection, an eternal love affair,” The EMBO Journal, vol. 22, no. 10, pp. 2324–2333, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Moser, K. R. Legate, R. Zent, and R. Fässler, “The tail of integrins, talin, and kindlins,” Science, vol. 324, no. 5929, pp. 895–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Geiger, J. P. Spatz, and A. D. Bershadsky, “Environmental sensing through focal adhesions,” Nature Reviews Molecular Cell Biology, vol. 10, no. 1, pp. 21–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Tadokoro, S. J. Shattil, K. Eto et al., “Talin binding to integrin β tails: a final common step in integrin activation,” Science, vol. 302, no. 5642, pp. 103–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Ye, G. Hu, D. Taylor et al., “Recreation of the terminal events in physiological integrin activation,” Journal of Cell Biology, vol. 188, no. 1, pp. 157–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Geiger, A. Bershadsky, R. Pankov, and K. M. Yamada, “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nature Reviews Molecular Cell Biology, vol. 2, no. 11, pp. 793–805, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Friedland, M. H. Lee, and D. Boettiger, “Mechanically activated integrin switch controls α5β1 function,” Science, vol. 323, no. 5914, pp. 642–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. W. Moore, P. Roca-Cusachs, and M. P. Sheetz, “Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing,” Developmental Cell, vol. 19, no. 2, pp. 194–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Klotzsch, M. L. Smith, K. E. Kubow et al., “Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 43, pp. 18267–18272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Kirmse, H. Otto, and T. Ludwig, “Interdependency of cell adhesion, force generation and extracellular proteolysis in matrix remodeling,” Journal of Cell Science, vol. 124, no. 11, pp. 1857–1866, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Hato, N. Pampori, and S. J. Shattil, “Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin αIIbβ3,” Journal of Cell Biology, vol. 141, no. 7, pp. 1685–1695, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. R. O. Jácamo and E. Rozengurt, “A truncated FAK lacking the FERM domain displays high catalytic activity but retains responsiveness to adhesion-mediated signals,” Biochemical and Biophysical Research Communications, vol. 334, no. 4, pp. 1299–1304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Lietha, X. Cai, D. F. J. Ceccarelli, Y. Li, M. D. Schaller, and M. J. Eck, “Structural basis for the autoinhibition of focal adhesion kinase,” Cell, vol. 129, no. 6, pp. 1177–1187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. D. Schlaepfer and T. Hunter, “Integrin signalling and tyrosine phosphorylation: just the FAKs?” Trends in Cell Biology, vol. 8, no. 4, pp. 151–157, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. D. D. Schlaepfer, S. K. Hanks, T. Hunter, and P. Van der Geer, “Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase,” Nature, vol. 372, no. 6508, pp. 786–791, 1994. View at Scopus
  19. K. Vuori, H. Hirai, S. Aizawa, and E. Ruoslahti, “Induction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases,” Molecular and Cellular Biology, vol. 16, no. 6, pp. 2606–2613, 1996. View at Scopus
  20. D. D. Schlaepfer, C. R. Hauck, and D. J. Sieg, “Signaling through focal adhesion kinase,” Progress in Biophysics and Molecular Biology, vol. 71, no. 3-4, pp. 435–478, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. H.-C. Chen and J.-L. Guan, “Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 10148–10152, 1994. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Khwaja, P. Rodriguez-Viciana, S. Wennström, P. H. Warne, and J. Downward, “Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway,” The EMBO Journal, vol. 16, no. 10, pp. 2783–2793, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Huveneers and E. H. J. Danen, “Adhesion signaling—crosstalk between integrins, Src and Rho,” Journal of Cell Science, vol. 122, no. 8, pp. 1059–1069, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Brugnera, L. Haney, C. Grimsley et al., “Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex,” Nature Cell Biology, vol. 4, no. 8, pp. 574–582, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Kiyokawa, Y. Hashimoto, S. Kobayashi, H. Sugimura, T. Kurata, and M. Matsuda, “Activation of Rac1 by a Crk SH3-binding protein, DOCK180,” Genes and Development, vol. 12, no. 21, pp. 3331–3336, 1998. View at Scopus
  26. D. Chodniewicz and R. L. Klemke, “Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold,” Biochimica et Biophysica Acta, vol. 1692, no. 2-3, pp. 63–76, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. N. O. Deakin and C. E. Turner, “Paxillin comes of age,” Journal of Cell Science, vol. 121, no. 15, pp. 2435–2444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. P. ten Klooster, Z. M. Jaffer, J. Chernoff, and P. L. Hordijk, “Targeting and activation of Rac1 are mediated by the exchange factor β-Pix,” Journal of Cell Biology, vol. 172, no. 5, pp. 759–769, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. W. T. Arthur, L. A. Petch, and K. Burridge, “Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism,” Current Biology, vol. 10, no. 12, pp. 719–722, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. X.-D. Ren, W. B. Kiosses, D. J. Sieg, C. A. Otey, D. D. Schlaepfer, and M. A. Schwartz, “Focal adhesion kinase suppresses Rho activity to promote focal adhesion,” Journal of Cell Science, vol. 113, no. 20, pp. 3673–3678, 2000. View at Scopus
  31. C. Guilluy, V. Swaminathan, R. Garcia-Mata, E. T. O'Brien, R. Superfine, and K. Burridge, “The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins,” Nature Cell Biology, vol. 13, no. 6, pp. 722–728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. D. Bass, M. R. Morgan, K. A. Roach, J. Settleman, A. B. Goryachev, and M. J. Humphries, “p190RhoGAP is the convergence point of adhesion signals from α5β1 integrin and syndecan-4,” Journal of Cell Biology, vol. 181, no. 6, pp. 1013–1026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Marcoux and K. Vuori, “EGF receptor mediates adhesion-dependent activation of the Rac GTPase: a role for phosphatidylinositol 3-kinase and Vav2,” Oncogene, vol. 22, no. 38, pp. 6100–6106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. K. M. Yamada and S. Even-Ram, “Integrin regulation of growth factor receptors,” Nature Cell Biology, vol. 4, no. 4, pp. E75–E76, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. Schwartz, “Integrin signaling revisited,” Trends in Cell Biology, vol. 11, no. 12, pp. 466–470, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Moro, L. Dolce, S. Cabodi et al., “Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines,” Journal of Biological Chemistry, vol. 277, no. 11, pp. 9405–9414, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Panayotou, P. End, M. Aumailley, R. Timpl, and J. Engel, “Domains of laminin with growth-factor activity,” Cell, vol. 56, no. 1, pp. 93–101, 1989. View at Scopus
  38. J. S. Munger, X. Huang, H. Kawakatsu et al., “The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis,” Cell, vol. 96, no. 3, pp. 319–328, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. J. S. Munger and D. Sheppard, “Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix,” Cold Spring Harbor Perspectives in Biology, vol. 3, Article ID a005017, 2011.
  40. D. E. Ingber, “Tensegrity: the architectural basis of cellular mechanotransduction,” Annual Review of Physiology, vol. 59, pp. 575–599, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. R. P. Martins, J. D. Finan, F. Guilak, and D. A. Lee, “Mechanical regulation of nuclear structure and function,” Annual Review of Biomedical Engineering, vol. 14, pp. 431–455, 2012.
  42. A. J. Maniotis, C. S. Chen, and D. E. Ingber, “Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 3, pp. 849–854, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. S. M. Frisch and E. Ruoslahti, “Integrins and anoikis,” Current Opinion in Cell Biology, vol. 9, no. 5, pp. 701–706, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. S. M. Frisch and R. A. Screaton, “Anoikis mechanisms,” Current Opinion in Cell Biology, vol. 13, no. 5, pp. 555–562, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. S. G. Kennedy, A. J. Wagner, S. D. Conzen et al., “The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal,” Genes and Development, vol. 11, no. 6, pp. 701–713, 1997. View at Scopus
  46. J. Downward, “PI 3-kinase, Akt and cell survival,” Seminars in Cell and Developmental Biology, vol. 15, no. 2, pp. 177–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Varner, D. A. Emerson, and R. L. Juliano, “Integrin α5β1 expression negatively regulates cell growth: reversal by attachment to fibronectin,” Molecular Biology of the Cell, vol. 6, no. 6, pp. 725–740, 1995. View at Scopus
  48. D. G. Stupack, X. S. Puente, S. Boutsaboualoy, C. M. Storgard, and D. A. Cheresh, “Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins,” Journal of Cell Biology, vol. 155, no. 4, pp. 459–470, 2001. View at Scopus
  49. D. Huang, M. Khoe, M. Befekadu et al., “Focal adhesion kinase mediates cell survival via NF-κB and ERK signaling pathways,” American Journal of Physiology, vol. 292, no. 4, pp. C1339–C1352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. S.-T. Lim, X. L. Chen, Y. Lim et al., “Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation,” Molecular Cell, vol. 29, no. 1, pp. 9–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. E. H. Danen and K. M. Yamada, “Fibronectin, integrins, and growth control,” Journal of Cellular Physiology, vol. 189, pp. 1–13, 2001.
  52. X. Zhu, M. Ohtsubo, R. M. Böhmer, J. M. Roberts, and R. K. Assoian, “Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein,” Journal of Cell Biology, vol. 133, no. 2, pp. 391–403, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. E. H. J. Danen, P. Sonneveld, A. Sonnenberg, and K. M. Yamada, “Dual stimulation of Ras/Mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression,” Journal of Cell Biology, vol. 151, no. 7, pp. 1413–1422, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Mettouchi, S. Klein, W. Guo et al., “Integrin-specific activation of Rac controls progression through the G1 phase of the cell cycle,” Molecular Cell, vol. 8, no. 1, pp. 115–127, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Wang, C. Ballestrem, and C. H. Streuli, “The C terminus of talin links integrins to cell cycle progression,” The Journal of Cell Biology, vol. 195, no. 3, pp. 499–513, 2011. View at Scopus
  56. N. Li, Y. Zhang, M. J. Naylor et al., “β1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli,” The EMBO Journal, vol. 24, no. 11, pp. 1942–1953, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. M. J. Naylor, N. Li, J. Cheung et al., “Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation,” Journal of Cell Biology, vol. 171, no. 4, pp. 717–728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Xu, C. M. Nelson, J. L. Muschler, M. Veiseh, B. K. Vonderhaar, and M. J. Bissell, “Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specifi c function,” Journal of Cell Biology, vol. 184, no. 1, pp. 57–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Akhtar and C. H. Streuli, “An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium,” Nature Cell Biology, vol. 15, pp. 17–27, 2013.
  60. A. S. Menko and D. Boettiger, “Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation,” Cell, vol. 51, no. 1, pp. 51–57, 1987. View at Scopus
  61. F. M. Watt, “Role of integrins in regulating epidermal adhesion, growth and differentiation,” The EMBO Journal, vol. 21, no. 15, pp. 3919–3926, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Margadant, R. A. Charafeddine, and A. Sonnenberg, “Unique and redundant functions of integrins in the epidermis,” FASEB Journal, vol. 24, no. 11, pp. 4133–4152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. F. M. Watt and B. L. M. Hogan, “Out of eden: stem cells and their niches,” Science, vol. 287, no. 5457, pp. 1427–1430, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Kerever, J. Schnack, D. Vellinga et al., “Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu,” Stem Cells, vol. 25, no. 9, pp. 2146–2157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. P. H. Jones and F. M. Watt, “Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression,” Cell, vol. 73, no. 4, pp. 713–724, 1993. View at Publisher · View at Google Scholar · View at Scopus
  66. R. G. Jones, X. Li, P. D. Gray et al., “Conditional deletion of β1 integrins in the intestinal epithelium causes a loss of Hedgehog expression, intestinal hyperplasia, and early postnatal lethality,” Journal of Cell Biology, vol. 175, no. 3, pp. 505–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. L. S. Campos, L. Decker, V. Taylor, and W. Skarnes, “Notch, epidermal growth factor receptor, and β1-integrin pathways are coordinated in neural stem cells,” Journal of Biological Chemistry, vol. 281, no. 8, pp. 5300–5309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Taddei, M.-A. Deugnier, M. M. Faraldo et al., “β1 Integrin deletion from the basal compartment of the mammary epithelium affects stem cells,” Nature Cell Biology, vol. 10, no. 6, pp. 716–722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. V. Marthiens, I. Kazanis, L. Moss, K. Long, and C. Ffrench-Constant, “Adhesion molecules in the stem cell niche—more than just staying in shape?” Journal of Cell Science, vol. 123, no. 10, pp. 1613–1622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science, vol. 276, no. 5317, pp. 1425–1428, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Fringer and F. Grinnell, “Fibroblast quiescence in floating or released collagen matrices: contribution of the ERK signaling pathway and actin cytoskeletal organization,” Journal of Biological Chemistry, vol. 276, no. 33, pp. 31047–31052, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. E. A. Klein, L. Yin, D. Kothapalli et al., “Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening,” Current Biology, vol. 19, no. 18, pp. 1511–1518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Mammoto, K. M. Connor, T. Mammoto et al., “A mechanosensitive transcriptional mechanism that controls angiogenesis,” Nature, vol. 457, no. 7233, pp. 1103–1108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell, vol. 126, no. 4, pp. 677–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Trappmann, J. E. Gautrot, J. T. Connelly et al., “Extracellular-matrix tethering regulates stem-cell fate,” Nature Materials, vol. 11, pp. 642–649, 2012.
  76. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. D. Taverna, H. Moher, D. Crowley, L. Borsig, A. Varki, and R. O. Hynes, “Increased primary tumor growth in mice null for β3- or β3/β5-integrins or selectins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 3, pp. 763–768, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. G. J. Mizejewski, “Role of integrins in cancer: survey of expression patterns,” Proceedings of the Society for Experimental Biology and Medicine, vol. 222, no. 2, pp. 124–138, 1999. View at Scopus
  79. E. H. J. Danen, “Integrins: regulators of tissue function and cancer progression,” Current Pharmaceutical Design, vol. 11, no. 7, pp. 881–891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. E. H. J. Danen and A. Sonnenberg, “Integrins in regulation of tissue development and function,” The Journal of pathology, vol. 201, no. 4, pp. 632–641, 2003. View at Scopus
  81. W. Guo and F. G. Giancotti, “Integrin signalling during tumour progression,” Nature Reviews Molecular Cell Biology, vol. 5, no. 10, pp. 816–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Olden and K. M. Yamada, “Mechanism of the decrease in the major cell surface protein of chick embryo fibroblasts after transformation,” Cell, vol. 11, no. 4, pp. 957–969, 1977. View at Scopus
  83. L. C. Plantefaber and R. O. Hynes, “Changes in integrin receptors on oncogenically transformed cells,” Cell, vol. 56, no. 2, pp. 281–290, 1989. View at Scopus
  84. F. G. Giancotti and E. Ruoslahti, “Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells,” Cell, vol. 60, no. 5, pp. 849–859, 1990. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Plath, K. Detjen, M. Welzel et al., “A novel function for the tumor suppressor p16INK4a: induction of anoikis via upregulation of the α5β1 fibronectin receptor,” Journal of Cell Biology, vol. 150, no. 6, pp. 1467–1477, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. P. A. J. Muller, P. T. Caswell, B. Doyle et al., “Mutant p53 drives invasion by promoting integrin recycling,” Cell, vol. 139, no. 7, pp. 1327–1341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. R. C. Bates, D. I. Bellovin, C. Brown et al., “Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 339–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. D. M. Owens, M. R. Romero, C. Gardner, and F. M. Watt, “Suprabasal α6β4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFβ signalling,” Journal of Cell Science, vol. 116, no. 18, pp. 3783–3791, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Van Waes, K. F. Kozarsky, A. B. Warren et al., “The A9 antigen associated with aggressive human squamous carcinoma is structurally and functionally similar to the newly defined integrin α6β4,” Cancer Research, vol. 51, no. 9, pp. 2395–2402, 1991. View at Scopus
  90. V. M. Weaver, S. Lelièvre, J. N. Lakins et al., “β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium,” Cancer Cell, vol. 2, no. 3, pp. 205–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. L. Trusolino, A. Bertotti, and P. M. Comoglio, “A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth,” Cell, vol. 107, no. 5, pp. 643–654, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. C. S. Downer, F. M. Watt, and P. M. Speight, “Loss of α6 and β4 integrin subunits coincides with loss of basement membrane components in oral squamous cell carcinomas,” Journal of Pathology, vol. 171, no. 3, pp. 183–190, 1993. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Gomez and A. Cano, “Expression of β1 integrin receptors in transformed mouse epidermal keratinocytes: upregulation of α5β1 in spindle carcinoma cells,” Molecular Carcinogenesis, vol. 12, no. 3, pp. 153–165, 1995. View at Publisher · View at Google Scholar · View at Scopus
  94. E. H. J. Danen, G. N. P. van Muijen, and D. J. Ruiter, “Role of integrins as signal transducing cell adhesion molecules in human cutaneous melanoma,” Cancer Surveys, vol. 24, pp. 43–65, 1995. View at Scopus
  95. M.-Y. Hsu, D.-T. Shih, F. E. Meier et al., “Adenoviral gene transfer of β3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma,” American Journal of Pathology, vol. 153, no. 5, pp. 1435–1442, 1998. View at Scopus
  96. R. E. B. Seftor, E. A. Seftor, W. G. Stetler-Stevenson, and M. J. C. Hendrix, “The 72 kDa type IV collagenase is modulated via differential expression of αvβ3 and α5β1 integrins during human melanoma cell invasion,” Cancer Research, vol. 53, no. 14, pp. 3411–3415, 1993. View at Scopus
  97. S. E. Bojesen, A. Tybjærg-Hansen, and B. G. Nordestgaard, “Integrin β3 Leu33Pro homozygosity and risk of cancer,” Journal of the National Cancer Institute, vol. 95, no. 15, pp. 1150–1157, 2003. View at Scopus
  98. B. Felding-Habermann, T. E. O'Toole, J. W. Smith et al., “Integrin activation controls metastasis in human breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1853–1858, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Takayama, S. Ishii, T. Ikeda, S. Masamura, M. Doi, and M. Kitajima, “The relationship between bone metastasis from human breast cancer and integrin αvβ3 expression,” Anticancer Research, vol. 25, no. 1A, pp. 79–83, 2005. View at Scopus
  100. C. van den Hoogen, G. van der Horst, H. Cheung, J. T. Buijs, R. C. M. Pelger, and G. van der Pluijm, “Integrin αv expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer,” American Journal of Pathology, vol. 179, no. 5, pp. 2559–2568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. N. P. McCabe, S. De, A. Vasanji, J. Brainard, and T. V. Byzova, “Prostate cancer specific integrin αvβ3 modulates bone metastatic growth and tissue remodeling,” Oncogene, vol. 26, no. 42, pp. 6238–6243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Huveneers, I. Van Den Bout, P. Sonneveld, A. Sancho, A. Sonnenberg, and E. H. J. Danen, “Integrin αvβ3 controls activity and oncogenic potential of primed c-Src,” Cancer Research, vol. 67, no. 6, pp. 2693–2700, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. J. S. Desgrosellier, L. A. Barnes, D. J. Shields et al., “An integrin αvβ3-c-Src oncogenic unit promotes anchorage-independence and tumor progression,” Nature Medicine, vol. 15, no. 10, pp. 1163–1169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Huveneers, S. Arslan, B. Van De Water, A. Sonnenberg, and E. H. J. Danen, “Integrins uncouple Src-induced morphological and oncogenic transformation,” Journal of Biological Chemistry, vol. 283, no. 19, pp. 13243–13251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. K. R. Levental, H. Yu, L. Kass et al., “Matrix crosslinking forces tumor progression by enhancing integrin signaling,” Cell, vol. 139, no. 5, pp. 891–906, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. B. Bierie and H. L. Moses, “Tumour microenvironment-GFΒ: the molecular Jekyll and Hyde of cancer,” Nature Reviews Cancer, vol. 6, no. 7, pp. 506–520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. G. E. Rice and M. P. Bevilacqua, “An inducible endothelial cell surface glycoprotein mediates melanoma adhesion,” Science, vol. 246, no. 4935, pp. 1303–1306, 1989. View at Scopus
  108. H. Okahara, H. Yagita, K. Miyake, and K. Okumura, “Involvement of very late activation antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) in tumor necrosis factor α enhancement of experimental metastasis,” Cancer Research, vol. 54, no. 12, pp. 3233–3236, 1994. View at Scopus
  109. B. M. C. Chan, N. Matsuura, Y. Takada, B. R. Zetter, and M. E. Hemler, “In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells,” Science, vol. 251, no. 5001, pp. 1600–1602, 1991. View at Scopus
  110. K. Moran-Jones, A. Ledger, and M. J. Naylor, “β1 integrin deletion enhances progression of prostate cancer in the TRAMP mouse model,” Scientific Reports, vol. 2, p. 526, 2012. View at Publisher · View at Google Scholar
  111. N. E. Ramirez, Z. Zhang, A. Madamanchi et al., “The α2β1 integrin is a metastasis suppressor in mouse models and human cancer,” Journal of Clinical Investigation, vol. 121, no. 1, pp. 226–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. D. E. White, N. A. Kurpios, D. Zuo et al., “Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction,” Cancer Cell, vol. 6, no. 2, pp. 159–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. L. Huck, S. M. Pontier, D. M. Zuo, and W. J. Muller, “β1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 35, pp. 15559–15564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Tran, B. Barlow, L. O'Rear et al., “Loss of the α2β1 integrin alters human papilloma virus-induced squamous carcinoma progression in vivo and in vitro,” PLoS ONE, vol. 6, no. 10, Article ID e26858, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Kren, V. Baeriswyl, F. Lehembre et al., “Increased tumor cell dissemination and cellular senescence in the absence of β1-integrin function,” The EMBO Journal, vol. 26, no. 12, pp. 2832–2842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. L. E. Reynolds, L. Wyder, J. C. Lively et al., “Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins,” Nature Medicine, vol. 8, no. 1, pp. 27–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. P. P. Provenzano, D. R. Inman, K. W. Eliceiri, H. E. Beggs, and P. J. Keely, “Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer,” American Journal of Pathology, vol. 173, no. 5, pp. 1551–1565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Lahlou, V. Sanguin-Gendreau, D. Zuo et al., “Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 51, pp. 20302–20307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Luo, H. Fan, T. Nagy et al., “Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells,” Cancer Research, vol. 69, no. 2, pp. 466–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. Pylayeva, K. M. Gillen, W. Gerald, H. E. Beggs, L. F. Reichardt, and F. G. Giancotti, “Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling,” Journal of Clinical Investigation, vol. 119, no. 2, pp. 252–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. G. W. McLean, N. H. Komiyama, B. Serrels et al., “Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression,” Genes and Development, vol. 18, no. 24, pp. 2998–3003, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Friedlander, P. C. Brooks, R. W. Shaffer, C. M. Kincaid, J. A. Varner, and D. A. Cheresh, “Definition of two angiogenic pathways by distinct αv integrins,” Science, vol. 270, no. 5241, pp. 1500–1502, 1995. View at Scopus
  123. B. Bader, H. Rayburn, D. Crowley, and R. O. Hynes, “Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins,” Cell, vol. 95, no. 4, pp. 507–519, 1998. View at Scopus
  124. S. Kim, K. Bell, S. A. Mousa, and J. A. Varner, “Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin,” American Journal of Pathology, vol. 156, no. 4, pp. 1345–1362, 2000. View at Scopus
  125. C. Gaggioli, S. Hooper, C. Hidalgo-Carcedo et al., “Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells,” Nature Cell Biology, vol. 9, no. 12, pp. 1392–1400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. C.-Q. Zhu, S. N. Popova, E. R. S. Brown et al., “Integrin α11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 28, pp. 11754–11759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. B. Garmy-Susini, C. J. Avraamides, J. S. Desgrosellier et al., “PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 22, pp. 9042–9047, 2013. View at Publisher · View at Google Scholar
  128. M. J. Humphries, K. Olden, and K. M. Yamada, “A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells,” Science, vol. 233, no. 4762, pp. 467–470, 1986. View at Scopus
  129. G. P. Curley, H. Blum, and M. J. Humphries, “Integrin antagonists,” Cellular and Molecular Life Sciences, vol. 56, no. 5-6, pp. 427–441, 1999. View at Publisher · View at Google Scholar · View at Scopus
  130. P. C. Brooks, S. Stromblad, R. Klemke, D. Visscher, F. H. Sarkar, and D. A. Cheresh, “Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin,” Journal of Clinical Investigation, vol. 96, no. 4, pp. 1815–1822, 1995. View at Scopus
  131. R. Kerbel and J. Folkman, “Clinical translation of angiogenesis inhibitors,” Nature Reviews Cancer, vol. 2, no. 10, pp. 727–739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. S. Hehlgans, M. Haase, and N. Cordes, “Signalling via integrins: implications for cell survival and anticancer strategies,” Biochimica et Biophysica Acta, vol. 1775, no. 1, pp. 163–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. D. Cox, M. Brennan, and N. Moran, “Integrins as therapeutic targets: lessons and opportunities,” Nature Reviews Drug Discovery, vol. 9, no. 10, pp. 804–820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. J. S. Desgrosellier and D. A. Cheresh, “Integrins in cancer: biological implications and therapeutic opportunities,” Nature Reviews Cancer, vol. 10, no. 1, pp. 9–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. J. C. Gutheil, T. N. Campbell, P. R. Pierce et al., “Targeted antiangiogenic therapy for cancer using vitaxin: a humanized monoclonal antibody to the integrin αvβ3,” Clinical Cancer Research, vol. 6, no. 8, pp. 3056–3061, 2000. View at Scopus
  136. C. Delbaldo, E. Raymond, K. Vera et al., “Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against αvβ3 integrin receptor, in patients with advanced solid tumors,” Investigational New Drugs, vol. 26, no. 1, pp. 35–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. D. G. McNeel, J. Eickhoff, F. T. Lee et al., “Phase I trial of a monoclonal antibody specific for αvβ3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion,” Clinical Cancer Research, vol. 11, no. 21, pp. 7851–7860, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. P. Hersey, J. Sosman, S. O'Day et al., “A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αvβ3, ± dacarbazine in patients with stage IV metastatic melanoma,” Cancer, vol. 116, no. 6, pp. 1526–1534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. S. A. Mullamitha, N. C. Ton, G. J. M. Parker et al., “Phase I evaluation of a fully human anti-αv integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors,” Clinical Cancer Research, vol. 13, no. 7, pp. 2128–2135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. K. W. Beekman, A. D. Colevas, K. Cooney et al., “Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design,” Clinical Genitourinary Cancer, vol. 4, no. 4, pp. 299–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. L. B. Nabors, T. Mikkelsen, S. S. Rosenfeld et al., “Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma,” Journal of Clinical Oncology, vol. 25, no. 13, pp. 1651–1657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. D. A. Reardon, K. L. Fink, T. Mikkelsen et al., “Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme,” Journal of Clinical Oncology, vol. 26, no. 34, pp. 5610–5617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. T. J. MacDonald, C. F. Stewart, M. Kocak et al., “Phase I clinical trial of cilengitide in children with refractory brain tumors: pediatric brain tumor consortium study PBTC-012,” Journal of Clinical Oncology, vol. 26, no. 6, pp. 919–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. A. R. Reynolds, I. R. Hart, A. R. Watson et al., “Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors,” Nature Medicine, vol. 15, no. 4, pp. 392–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. A. D. Ricart, A. W. Tolcher, G. Liu et al., “Volociximab, a chimeric monoclonal antibody that specifically binds α5β1 integrin: a phase l, pharmacokinetic, and biological correlative study,” Clinical Cancer Research, vol. 14, no. 23, pp. 7924–7929, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. E. H. J. Danen, S.-I. Aota, A. A. van Kraats, K. M. Yamada, D. J. Ruiter, and G. N. P. Van Muijen, “Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin α5β1,” Journal of Biological Chemistry, vol. 270, no. 37, pp. 21612–21618, 1995. View at Publisher · View at Google Scholar · View at Scopus
  147. P. Khalili, A. Arakelian, G. Chen et al., “A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo,” Molecular Cancer Therapeutics, vol. 5, no. 9, pp. 2271–2280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. D. L. Livant, R. K. Brabec, K. J. Pienta et al., “Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma,” Cancer Research, vol. 60, no. 2, pp. 309–320, 2000. View at Scopus
  149. M. E. Cianfrocca, K. A. Kimmel, J. Gallo et al., “Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2), a beta integrin antagonist, in patients with solid tumours,” British Journal of Cancer, vol. 94, no. 11, pp. 1621–1626, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. W. G. Roberts, E. Ung, P. Whalen et al., “Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271,” Cancer Research, vol. 68, no. 6, pp. 1935–1944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. A. Schultze and W. Fiedler, “Therapeutic potential and limitations of new FAK inhibitors in the treatment of cancer,” Expert Opinion on Investigational Drugs, vol. 19, no. 6, pp. 777–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. J. Halder, Y. G. Lin, W. M. Merritt et al., “Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma,” Cancer Research, vol. 67, no. 22, pp. 10976–10983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. V. G. Brunton and M. C. Frame, “Src and focal adhesion kinase as therapeutic targets in cancer,” Current Opinion in Pharmacology, vol. 8, no. 4, pp. 427–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. A. Abdollahi, D. W. Griggs, H. Zieher et al., “Inhibition of αvβ3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy,” Clinical Cancer Research, vol. 11, no. 17, pp. 6270–6279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. T. Sethi, R. C. Rintoul, S. M. Moore et al., “Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo,” Nature Medicine, vol. 5, no. 6, pp. 662–668, 1999. View at Publisher · View at Google Scholar · View at Scopus
  156. F. Aoudjit and K. Vuori, “Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells,” Oncogene, vol. 20, no. 36, pp. 4995–5004, 2001. View at Publisher · View at Google Scholar · View at Scopus
  157. F. Thomas, J. M. P. Holly, R. Persad, A. Bahl, and C. M. Perks, “Fibronectin confers survival against chemotherapeutic agents but not against radiotherapy in DU145 prostate cancer cells: involvement of the insulin like growth factor-1 receptor,” Prostate, vol. 70, no. 8, pp. 856–865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. J. C. Puigvert, S. Huveneers, L. Fredriksson, M. O. H. Veld, B. Van De Water, and E. H. J. Danen, “Cross-talk between integrins and oncogenes modulates chemosensitivity,” Molecular Pharmacology, vol. 75, no. 4, pp. 947–955, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. N. Cordes, J. Seidler, R. Durzok, H. Geinitz, and C. Brakebusch, “β1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury,” Oncogene, vol. 25, no. 9, pp. 1378–1390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  160. C. C. Park, H. J. Zhang, E. S. Yao, C. J. Park, and M. J. Bissell, “β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts,” Cancer Research, vol. 68, no. 11, pp. 4398–4405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. I. Eke, Y. Deuse, S. Hehlgans et al., “β1 integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy,” Journal of Clinical Investigation, vol. 122, no. 4, pp. 1529–1540, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. J.-M. Nam, Y. Onodera, M. J. Bissell, and C. C. Park, “Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin α5β1 and fibronectin,” Cancer Research, vol. 70, no. 13, pp. 5238–5248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. D. Lane, N. Goncharenko-Khaider, C. Rancourt, and A. Piché, “Ovarian cancer ascites protects from TRAIL-induced cell death through αvβ5 integrin-mediated focal adhesion kinase and Akt activation,” Oncogene, vol. 29, no. 24, pp. 3519–3531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. X. H. Yang, L. M. Flores, Q. Li et al., “Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists,” Cancer Research, vol. 70, no. 6, pp. 2256–2263, 2010. View at Publisher · View at Google Scholar · View at Scopus