About this Journal Submit a Manuscript Table of Contents
ISRN Cell Biology
Volume 2013 (2013), Article ID 315387, 21 pages
http://dx.doi.org/10.1155/2013/315387
Review Article

Building Spinal and Brain Commissures: Axon Guidance at the Midline

University of Lyon, University Claude Bernard Lyon1, CGphiMC UMR CNRS 5534, 16 rue Raphael Dubois, 69000 Lyon, France

Received 3 April 2013; Accepted 23 April 2013

Academic Editors: V. M. Golubovskaya, Z. Pan, W. K. Song, and T. Yazawa

Copyright © 2013 Valérie Castellani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Vulliemoz, O. Raineteau, and D. Jabaudon, “Reaching beyond the midline: why are human brains cross wired?” The Lancet Neurology, vol. 4, no. 2, pp. 87–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. M. Fame, J. L. MacDonald, and J. D. Macklis, “Development, specification, and diversity of callosal projection neurons,” Trends in Neurosciences, vol. 34, no. 1, pp. 41–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Fitsiori, D. Nguyen, A. Karentzos, J. Delavelle, and M. I. Vargas, “The corpus callosum: white matter or terra incognita,” British Journal of Radiology, vol. 84, no. 997, pp. 5–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Kamnasaran, “Agenesis of the corpus callosum: lessons from humans and mice,” Clinical and Investigative Medicine, vol. 28, no. 5, pp. 267–282, 2005. View at Scopus
  5. S. Kenwrick, A. Watkins, and E. De Angelis, “Neural cell recognition molecule L1: relating biological complexity to human disease mutations,” Human Molecular Genetics, vol. 9, no. 6, pp. 879–886, 2000. View at Scopus
  6. E. C. Engle, “Human genetic disorders of axon guidance,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 3, Article ID a001784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Saxena, L. Tamm, A. Walley et al., “A preliminary investigation of corpus callosum and anterior commissure aberrations in aggressive youth with bipolar disorders,” Journal of Child and Adolescent Psychopharmacology, vol. 22, pp. 112–119, 2012.
  8. H. Choi, M. Kubicki, T. J. Whitford et al., “Diffusion tensor imaging of anterior commissural fibers in patients with schizophrenia,” Schizophrenia Research, vol. 130, no. 1–3, pp. 78–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. Shuman, “The Chiari malformations: a constellation of anomalies,” Seminars in Pediatric Neurology, vol. 2, no. 3, pp. 220–226, 1995. View at Scopus
  10. C. Herweh, M. Akbar, M. Wengenroth et al., “DTI of commissural fibers in patients with Chiari II-malformation,” NeuroImage, vol. 44, no. 2, pp. 306–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hayashi, K. Sakamoto, K. Kurata, J. Nagata, J. Satoh, and Y. Morimatsu, “Septo-optic dysplasia with cerebellar hypoplasia in Cornelia de Lange syndrome,” Acta Neuropathologica, vol. 92, no. 6, pp. 625–630, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. D. M. Clark, I. Sherer, M. A. Deardorff et al., “Identification of a prenatal profile of Cornelia de Lange Syndrome (CdLS): a review of 53 CdLS pregnancies,” American Journal of Medical Genetics A, vol. 158, pp. 1848–1856, 2012.
  13. M. A. Tischfield, H. N. Baris, C. Wu et al., “Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance,” Cell, vol. 140, no. 1, pp. 74–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Hingorani, I. Hanson, and V. van Heyningen, “Aniridia,” European Journal of Human Genetics, vol. 20, pp. 1011–1017, 2012.
  15. D. E. Bamiou, S. L. Free, S. M. Sisodiya et al., “Auditory interhemispheric transfer deficits, hearing difficulties, and brain magnetic resonance imaging abnormalities in children with congenital aniridia due to PAX6 mutations,” Archives of Pediatrics and Adolescent Medicine, vol. 161, no. 5, pp. 463–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. B. Northam, F. Liégeois, J. D. Tournier et al., et al., “Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm,” Brain, vol. 135, pp. 3781–3798, 2012.
  17. G. J. Bashaw and R. Klein, “Signaling from axon guidance receptors,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 5, Article ID a001941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Raper and C. Mason, “Cellular strategies of axonal pathfinding,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 9, Article ID a001933, 2010. View at Scopus
  19. E. A. Vitriol and J. Q. Zheng, “Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane,” Neuron, vol. 73, pp. 1068–1081, 2012.
  20. V. V. Chizhikov and K. J. Millen, “Roof plate-dependent patterning of the vertebrate dorsal central nervous system,” Developmental Biology, vol. 277, no. 2, pp. 287–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. N. A. Bermingham, B. A. Hassan, V. Y. Wang et al., “Proprioceptor pathway development is dependent on MATH1,” Neuron, vol. 30, no. 2, pp. 411–422, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. K. J. Lee, M. Mendelsohn, and T. M. Jessell, “Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord,” Genes and Development, vol. 12, no. 21, pp. 3394–3407, 1998. View at Scopus
  23. Y. Muroyama, M. Fujihara, M. Ikeya, H. Kondoh, and S. Takada, “Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord,” Genes and Development, vol. 16, no. 5, pp. 548–553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. K. F. Liem Jr., G. Tremml, and T. M. Jessell, “A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord,” Cell, vol. 91, no. 1, pp. 127–138, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. S. I. Wilson, B. Shafer, K. J. Lee, and J. Dodd, “A molecular program for contralateral trajectory: Rig-1 control by LIM homeodomain transcription factors,” Neuron, vol. 59, no. 3, pp. 413–424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Ding, P. S. Joshi, Z. H. Xie, M. Xiang, and L. Gan, “BARHL2 transcription factor regulates the ipsilateral/contralateral subtype divergence in postmitotic dI1 neurons of the developing spinal cord,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 1566–1571, 2012.
  27. T. J. Petros, A. Rebsam, and C. A. Mason, “Retinal axon growth at the optic chiasm: to cross or not to cross,” Annual Review of Neuroscience, vol. 31, pp. 295–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Augsburger, A. Schuchardt, S. Hoskins, J. Dodd, and S. Butler, “Bmps as mediators of roof plate repulsion of commissural neurons,” Neuron, vol. 24, no. 1, pp. 127–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Yamauchi, S. G. Varadarajan, J. E. Li, and S. J. Butler, “Type Ib BMP receptors mediate the rate of commissural axon extension through inhibition of cofilin activity,” Development, vol. 140, pp. 333–342, 2013.
  30. D. Bagnard, N. Thomasset, M. Lohrum, A. W. Püschel, and J. Bolz, “Spatial distributions of guidance molecules regulate chemorepulsion and chemoattraction of growth cones,” The Journal of Neuroscience, vol. 20, no. 3, pp. 1030–1035, 2000. View at Scopus
  31. S. M. Islam, Y. Shinmyo, T. Okafuji et al., “Draxin, a repulsive guidance protein for spinal cord and forebrain commissures,” Science, vol. 323, no. 5912, pp. 388–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Serafini, T. E. Kennedy, M. J. Galko, C. Mirzayan, T. M. Jessell, and M. Tessier- Lavigne, “The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6,” Cell, vol. 78, no. 3, pp. 409–424, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Serafini, S. A. Colamarino, E. D. Leonardo et al., “Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system,” Cell, vol. 87, no. 6, pp. 1001–1014, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Fazeli, S. L. Dickinson, M. L. Hermiston et al., “Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene,” Nature, vol. 386, no. 6627, pp. 796–804, 1997. View at Scopus
  35. T. E. Kennedy, H. Wang, W. Marshall, and M. Tessier-Lavigne, “Axon guidance by diffusible chemoattractants: a gradient of netrin protein in the developing spinal cord,” The Journal of Neuroscience, vol. 26, no. 34, pp. 8866–8874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Brankatschk and B. J. Dickson, “Netrins guide Drosophila commissural axons at short range,” Nature Neuroscience, vol. 9, no. 2, pp. 188–194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Harris, L. M. Sabatelli, and M. A. Seeger, “Guidance cues at the Drosophila CNS midline: identification and characterization of two Drosophila Netrin/UNC-6 homologs,” Neuron, vol. 17, no. 2, pp. 217–228, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Ly, A. Nikolaev, G. Suresh, Y. Zheng, M. Tessier-Lavigne, and E. Stein, “DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to Netrin-1,” Cell, vol. 133, no. 7, pp. 1241–1254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Liu, W. Li, L. Wang et al., “DSCAM functions as a netrin receptor in commissural axon pathfinding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2951–2956, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Palmesino, P. C. Haddick, M. Tessier-Lavigne, and A. Kania, “Genetic analysis of DSCAM's role as a Netrin-1 receptor in vertebrates,” The Journal of Neuroscience, vol. 32, pp. 411–416, 2012.
  41. V. Corset, K. T. Nguyen-Ba-Charvet, C. Forcet, E. Moyse, A. Chédotal, and P. Mehlen, “Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor,” Nature, vol. 407, no. 6805, pp. 747–750, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. W. L. McKenna, C. Wong-Staal, G. C. Kim, H. Macias, L. Hinck, and J. L. Bartoe, “Netrin-1-independent adenosine A2b receptor activation regulates the response of axons to Netrin-1 by controlling cell surface levels of UNC5A receptors,” Journal of Neurochemistry, vol. 104, no. 4, pp. 1081–1090, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Rama, D. Goldschneider, V. Corset, J. Lambert, L. Pays, and P. Mehlen, “Amyloid precursor protein regulates Netrin-1-mediated commissural axon outgrowth,” The Journal of Biological Chemistry, vol. 287, pp. 30014–30023, 2012. View at Publisher · View at Google Scholar
  44. F. Charron, E. Stein, J. Jeong, A. P. McMahon, and M. Tessier-Lavigne, “The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with Netrin-1 in midline axon guidance,” Cell, vol. 113, no. 1, pp. 11–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Okada, F. Charron, S. Morin et al., “Boc is a receptor for sonic hedgehog in the guidance of commissural axons,” Nature, vol. 444, no. 7117, pp. 369–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Ruiz de Almodovar, P. J. Fabre, E. Knevels et al., “VEGF mediates commissural axon chemoattraction through its receptor Flk1,” Neuron, vol. 70, no. 5, pp. 966–978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Kiecker and A. Lumsden, “The role of organizers in patterning the nervous system,” Annual Review of Neuroscience, vol. 35, pp. 347–367, 2012.
  48. G. Le Dreau and E. Marti, “Dorsal-ventral patterning of the neural tube: a tale of three signals,” Developmental Neurobiology, vol. 72, pp. 1471–1481, 2012.
  49. M. Joksimovic, M. Patel, M. M. Taketo, R. Johnson, and R. Awatramani, “Ectopic Wnt/beta-catenin signaling induces neurogenesis in the spinal cord and hindbrain floor plate,” PloS One, vol. 7, Article ID e30266, 2012.
  50. H. Nawabi and V. Castellani, “Axonal commissures in the central nervous system: how to cross the midline?” Cellular and Molecular Life Sciences, vol. 68, no. 15, pp. 2539–2553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Nawabi, A. Briançon-Marjollet, C. Clark et al., “A midline switch of receptor processing regulates commissural axon guidance in vertebrates,” Genes and Development, vol. 24, no. 4, pp. 396–410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Charoy, H. Nawabi, F. Reynaud et al., “gdnf activates midline repulsion by Semaphorin3B via NCAM during commissural axon guidance,” Neuron, vol. 75, pp. 1051–1066, 2012. View at Publisher · View at Google Scholar
  53. D. L. Black and S. L. Zipursky, “To cross or not to cross: alternatively spliced forms of the robo3 receptor regulate discrete steps in axonal midline crossing,” Neuron, vol. 58, no. 3, pp. 297–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. B. J. Dickson and G. F. Gilestro, “Regulation of commissural axon pathfinding by Slit and its Robo receptors,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 651–675, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. T. A. Evans and G. J. Bashaw, “Axon guidance at the midline: of mice and flies,” Current Opinion in Neurobiology, vol. 20, no. 1, pp. 79–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Shirasaki, R. Katsumata, and F. Murakami, “Change in chemoattractant responsiveness of developing axons at an intermediate target,” Science, vol. 279, no. 5347, pp. 105–107, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. J. L. Bonkowsky, S. Yoshikawa, D. D. O'Keefe, A. L. Scully, and J. B. Thomas, “Axon routing across the midline controlled by the Drosophila Derailed receptor,” Nature, vol. 402, no. 6761, pp. 540–544, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Kidd, C. Russell, C. S. Goodman, and G. Tear, “Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline,” Neuron, vol. 20, no. 1, pp. 25–33, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Kidd, K. S. Bland, and C. S. Goodman, “Slit is the midline repellent for the Robo receptor in Drosophila,” Cell, vol. 96, no. 6, pp. 785–794, 1999. View at Scopus
  60. M. Georgiou and G. Tear, “Commissureless is required both in commissural neurones and midline cells for axon guidance across the midline,” Development, vol. 129, no. 12, pp. 2947–2956, 2002. View at Scopus
  61. M. Georgiou and G. Tear, “The N-terminal and transmembrane domains of Commissureless are necessary for its function and trafficking within neurons,” Mechanisms of Development, vol. 120, no. 9, pp. 1009–1019, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Keleman, S. Rajagopalan, D. Cleppien et al., “Comm sorts Robo to control axon guidance at the Drosophila midline,” Cell, vol. 110, no. 4, pp. 415–427, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Keleman, C. Ribeiro, and B. J. Dickson, “Comm function in commissural axon guidance: cell-autonomous sorting of Robo in vivo,” Nature Neuroscience, vol. 8, no. 2, pp. 156–163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Brose, K. S. Bland, H. W. Kuan et al., “Slit proteins bind robo receptors and have an evolutionarily conserved role in repulsive axon guidance,” Cell, vol. 96, no. 6, pp. 795–806, 1999. View at Scopus
  65. T. Kidd, K. Brose, K. J. Mitchell et al., “Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors,” Cell, vol. 92, no. 2, pp. 205–215, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. G. F. Gilestro, “Redundant mechanisms for regulation of midline crossing in Drosophila,” PLoS ONE, vol. 3, no. 11, Article ID e3798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Spitzweck, M. Brankatschk, and B. J. Dickson, “Distinct protein domains and expression patterns confer divergent axon guidance functions for Drosophila robo Receptors,” Cell, vol. 140, no. 3, pp. 409–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Yang, D. S. Garbe, and G. J. Bashaw, “A frazzled/DCC-dependent transcriptional switch regulates midline axon guidance,” Science, vol. 324, no. 5929, pp. 944–947, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. Q. X. Liu, M. Hiramoto, H. Ueda, T. Gojobori, Y. Hiromi, and S. Hirose, “Midline governs axon pathfinding by coordinating expression of two major guidance systems,” Genes and Development, vol. 23, no. 10, pp. 1165–1170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Long, C. Sabatier, L. Ma et al., “Conserved roles for Slit and Robo proteins in midline commissural axon guidance,” Neuron, vol. 42, no. 2, pp. 213–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Zou, E. Stoeckli, H. Chen, and M. Tessier-Lavigne, “Squeezing axons out of the gray matter: a role for slit and Semaphorin proteins from midline and ventral spinal cord,” Cell, vol. 102, no. 3, pp. 363–375, 2000. View at Scopus
  72. Z. Chen, B. B. Gore, H. Long, L. Ma, and M. Tessier-Lavigne, “Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion,” Neuron, vol. 58, no. 3, pp. 325–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Sabatier, A. S. Plump, L. Ma et al., “The divergent robo family protein Rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons,” Cell, vol. 117, no. 2, pp. 157–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. H. A. Coleman, J. P. Labrador, R. K. Chance, and G. J. Bashaw, “The Adam family metalloprotease Kuzbanian regulates the cleavage of the roundabout receptor to control axon repulsion at the midline,” Development, vol. 137, no. 14, pp. 2417–2426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Yuasa-Kawada, M. Kinoshita-Kawada, G. Wu, Y. Rao, and J. Y. Wu, “Midline crossing and Slit responsiveness of commissural axons require USP33,” Nature Neuroscience, vol. 12, no. 9, pp. 1087–1089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Philipp, V. Niederkofler, M. Debrunner, T. Alther, B. Kunz, and E. T. Stoeckli, “RabGDI controls axonal midline crossing by regulating Robo1 surface expression,” Neural Development, vol. 7, article 36, 2012.
  77. K. I. Kuwako, K. Kakumoto, T. Imai et al., “Neural RNA-binding protein musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression,” Neuron, vol. 67, no. 3, pp. 407–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Yan and X. Lin, “Shaping morphogen gradients by proteoglycans,” Cold Spring Harbor Perspectives in Biology, vol. 1, no. 3, Article ID a002493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Gallet, L. Staccini-Lavenant, and P. P. Thérond, “Cellular trafficking of the glypican dally-like is required for full-strength hedgehog signaling and wingless transcytosis,” Developmental Cell, vol. 14, no. 5, pp. 712–725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Hu, “Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein,” Nature Neuroscience, vol. 4, no. 7, pp. 695–701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. K. G. Johnson, A. Ghose, E. Epstein, J. Lincecum, M. B. O'Connor, and D. Van Vactor, “Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent slit during midline axon guidance,” Current Biology, vol. 14, no. 6, pp. 499–504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Xiao, W. Staub, E. Robles, N. J. Gosse, G. J. Cole, and H. Baier, “Assembly of lamina-specific neuronal connections by slit bound to type IV collagen,” Cell, vol. 146, no. 1, pp. 164–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. K. M. Wright, K. A. Lyon, H. Leung, D. J. Leahy, L. Ma, and D. D. Ginty, “Dystroglycan organizes axon guidance cue localization and axonal pathfinding,” Neuron, vol. 76, pp. 931–944, 2012.
  84. N. Yokoyama, M. I. Romero, C. A. Cowan et al., “Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline,” Neuron, vol. 29, no. 1, pp. 85–97, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Kullander, N. K. Mather, F. Diella, M. Dottori, A. W. Boyd, and R. Klein, “Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo,” Neuron, vol. 29, no. 1, pp. 73–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Lee, T. J. Petros, and C. A. Mason, “Zic2 regulates retinal ganglion cell axon avoidance of ephrinB2 through inducing expression of the guidance receptor EphB1,” The Journal of Neuroscience, vol. 28, no. 23, pp. 5910–5919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. S. R. Kadison, T. Mäkinen, R. Klein, M. Henkemeyer, and Z. Kaprielian, “EphB receptors and ephrin-B3 regulate axon guidance at the ventral midline of the embryonic mouse spinal cord,” The Journal of Neuroscience, vol. 26, no. 35, pp. 8909–8914, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. R. P. Kruger, J. Aurandt, and K. L. Guan, “Semaphorins command cells to move,” Nature Reviews Molecular Cell Biology, vol. 6, no. 10, pp. 789–800, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. V. Castellani, “The function of neuropilin/L1 complex,” Advances in Experimental Medicine and Biology, vol. 515, pp. 91–102, 2002. View at Scopus
  90. L. M. Parra and Y. Zou, “Sonic hedgehog induces response of commissural axons to Semaphorin repulsion during midline crossing,” Nature Neuroscience, vol. 13, no. 1, pp. 29–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. E. Stein and M. Tessier-Lavigne, “Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex,” Science, vol. 291, no. 5510, pp. 1928–1938, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. B. B. Gore, K. G. Wong, and M. Tessier-Lavigne, “Stem cell factor functions as an outgrowth-promoting factor to enable axon exit from the midline intermediate target,” Neuron, vol. 57, no. 4, pp. 501–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Bourikas, V. Pekarik, T. Baeriswyl et al., “Sonic hedgehod guides commissural axons along the longitudinal axis of the spinal cord,” Nature Neuroscience, vol. 8, no. 3, pp. 297–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. P. T. Yam, C. B. Kent, S. Morin et al., “14-3-3 proteins regulate a cell-intrinsic switch from sonic hedgehog-mediated commissural axon attraction to repulsion after midline crossing,” Neuron, vol. 76, pp. 735–749, 2012.
  95. M. L. Baudet, K. H. Zivraj, C. Abreu-Goodger et al., “miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones,” Nature Neuroscience, vol. 15, pp. 29–38, 2012.
  96. E. T. Stoeckli and L. T. Landmesser, “Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons,” Neuron, vol. 14, no. 6, pp. 1165–1179, 1995. View at Scopus
  97. E. T. Stoeckli, P. Sonderegger, G. E. Pollerberg, and L. T. Landmesser, “Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons,” Neuron, vol. 18, no. 2, pp. 209–221, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Burstyn-Cohen, V. Tzarfaty, A. Frumkin, Y. Feinstein, E. Stoeckli, and A. Klar, “F-spondin is required for accurate pathfinding of commissural axons at the floor plate,” Neuron, vol. 23, no. 2, pp. 233–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Imondi, A. R. Jevince, A. W. Helms, J. E. Johnson, and Z. Kaprielian, “Mis-expression of L1 on pre-crossing spinal commissural axons disrupts pathfinding at the ventral midline,” Molecular and Cellular Neuroscience, vol. 36, no. 4, pp. 462–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. O. Avraham, L. Vald, S. Zisman, A. Schejter, and A. Visel, “Transcriptional control of axonal guidance and sorting in dorsal interneurons by the Lim-HD proteins Lhx9 and Lhx1,” Neural Development, vol. 4, no. 1, article 21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. A. I. Lyuksyutova, C. C. Lu, N. Milanesio et al., “Anterior-posterior guidance of commissural axons by Wnt-Frizzled signaling,” Science, vol. 302, no. 5652, pp. 1984–1988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Domanitskaya, A. Wacker, O. Mauti et al., “Sonic hedgehog guides post-crossing commissural axons both directly and indirectly by regulating Wnt activity,” The Journal of Neuroscience, vol. 30, no. 33, pp. 11167–11176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Joset, A. Wacker, R. Babey et al., “Rostral growth of commissural axons requires the cell adhesion molecule MDGA2,” Neural Development, vol. 6, no. 1, article 22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. V. Niederkofler, T. Baeriswyl, R. Ott, and E. T. Stoeckli, “Nectin-like molecules/SynCAMs are required for post-crossing commissural axon guidance,” Development, vol. 137, no. 3, pp. 427–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Rajagopalan, E. Nicolas, V. Vivancos, J. Berger, and B. J. Dickson, “Crossing the midline: roles and regulation of Robo receptors,” Neuron, vol. 28, no. 3, pp. 767–777, 2000. View at Publisher · View at Google Scholar · View at Scopus
  106. J. H. Simpson, T. Kidd, K. S. Bland, and C. S. Goodman, “Short-range and long-range guidance by Slit and its robo receptors: Robo and Robo2 play distinct roles in midline guidance,” Neuron, vol. 28, no. 3, pp. 753–766, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. B. Spitzweck, M. Brankatschk, and B. J. Dickson, “Distinct protein domains and expression patterns confer divergent axon guidance functions for Drosophila Robo Receptors,” Cell, vol. 140, no. 3, pp. 409–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Jaworski, H. Long, and M. Tessier-Lavigne, “Collaborative and specialized functions of Robo1 and Robo2 in spinal commissural axon guidance,” The Journal of Neuroscience, vol. 30, no. 28, pp. 9445–9453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Fujisawa, “From the discovery of neuropilin to the determination of its adhesion sites,” Advances in Experimental Medicine and Biology, vol. 515, pp. 1–12, 2002. View at Scopus
  110. D. P. Wolfer, R. J. Giger, M. Stagliar, P. Sonderegger, and H. P. Lipp, “Expression of the axon growth-related neural adhesion molecule TAG-1/axonin-1 in the adult mouse brain,” Anatomy and Embryology, vol. 197, no. 3, pp. 177–185, 1998. View at Publisher · View at Google Scholar · View at Scopus
  111. E. T. Stoeckli and L. T. Landmesser, “Axon guidance at choice points,” Current Opinion in Neurobiology, vol. 8, no. 1, pp. 73–79, 1998. View at Publisher · View at Google Scholar · View at Scopus
  112. B. Chen, S. S. Wang, A. M. Hattox, H. Rayburn, S. B. Nelson, and S. K. McConnell, “The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11382–11387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. E. A. Alcamo, L. Chirivella, M. Dautzenberg et al., “Satb2 regulates callosal projection neuron identity in the developing cerebral cortex,” Neuron, vol. 57, no. 3, pp. 364–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. C. Baranek, M. Dittrich, S. Parthasarathy, et al., “Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 3546–3551, 2012.
  115. R. Hand and F. Polleux, “Neurogenin2 regulates the initial axon guidance of cortical pyramidal neurons projecting medially to the corpus callosum,” Neural Development, vol. 6, article 30, 2011. View at Publisher · View at Google Scholar
  116. P. Mattar, O. Britz, C. Johannes et al., “A screen for downstream effectors of Neurogenin2 in the embryonic neocortex,” Developmental Biology, vol. 273, no. 2, pp. 373–389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. X. Jiang, Y. Zhou, L. Xian, W. Chen, H. Wu, and X. Gao, “The mutation in Chd7 causes misexpression of Bmp4 and developmental defects in telencephalic midline,” The American Journal of Pathology, vol. 181, pp. 626–641, 2012.
  118. J. Silver, “Glia-neuron interactions at the midline of the developing mammalian brain and spinal cord,” Perspectives on Developmental Neurobiology, vol. 1, no. 4, pp. 227–236, 1993. View at Scopus
  119. C. Lindwall, T. Fothergill, and L. J. Richards, “Commissure formation in the mammalian forebrain,” Current Opinion in Neurobiology, vol. 17, no. 1, pp. 3–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Piper, R. X. Moldrich, C. Lindwall et al., “Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice,” Neural Development, vol. 4, no. 1, article 43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. D. Magnani, K. Hasenpusch-Theil, C. Benadiba, et al., “Gli3 controls corpus callosum formation by positioning midline guideposts during telencephalic patterning,” Cereb Cortex, 2012. View at Publisher · View at Google Scholar
  122. E. M. Amaniti, K. Hasenpusch-Theil, Z. Li et al., “Gli3 is required in Emx1+ progenitors for the development of the corpus callosum,” Developmental Biology, vol. 376, pp. 113–124, 2013. View at Publisher · View at Google Scholar
  123. S. Tole, G. Gutin, L. Bhatnagar, R. Remedios, and J. M. Hébert, “Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum,” Developmental Biology, vol. 289, no. 1, pp. 141–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. K. M. Smith, Y. Ohkubo, M. E. Maragnoli et al., “Midline radial glia translocation and corpus callosum formation require FGF signaling,” Nature Neuroscience, vol. 9, no. 6, pp. 787–797, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. C. Sánchez-Camacho, J. A. Ortega, I. Ocaña, S. Alcántara, and P. Bovolenta, “Appropriate Bmp7 levels are required for the differentiation of midline guidepost cells involved in corpus callosum formation,” Developmental Neurobiology, vol. 71, no. 5, pp. 337–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. D. K. Unni, M. Piper, R. X. Moldrich et al., “Multiple Slits regulate the development of midline glial populations and the corpus callosum,” Developmental Biology, vol. 365, pp. 36–49, 2012.
  127. W. Hofmeister and B. Key, “Frizzled-3a and Wnt-8b genetically interact during forebrain commissural formation in embryonic zebrafish,” Brain Research, vol. 1506, pp. 25–34, 2013.
  128. M. Niquille, S. Garel, F. Mann et al., “Transient neuronal populations are required to guide callosal axons: a role for semaphorin 3C,” PLoS Biology, vol. 7, no. 10, Article ID e1000230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Niquille, S. Minocha, J. P. Hornung et al., et al., “Two specific populations of GABAergic neurons originating from the medial and the caudal ganglionic eminences aid in proper navigation of callosal axons,” Developmental Neurobiology, 2013. View at Publisher · View at Google Scholar
  130. C. Benadiba, D. Magnani, M. Niquille, et al., “The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development,” PLoS Genetics, vol. 8, Article ID e1002606, 2012.
  131. S. E. Koester and D. D. M. O'Leary, “Axons of early generated neurons in cingulate cortex pioneer the corpus callosum,” The Journal of Neuroscience, vol. 14, no. 11, pp. 6608–6620, 1994. View at Scopus
  132. V. Borrell and O. Marín, “Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling,” Nature Neuroscience, vol. 9, no. 10, pp. 1284–1293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. G. Li, H. Kataoka, S. R. Coughlin, and S. J. Pleasure, “Identification of a transient subpial neurogenic zone in the developing dentate gyrus and its regulation by Cxcl12 and reelin signaling,” Development, vol. 136, no. 2, pp. 327–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Choe, J. A. Siegenthaler, and S. J. Pleasure, “A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation,” Neuron, vol. 73, pp. 698–712, 2012.
  135. Y. Wang, J. Zhang, S. Mori, and J. Nathans, “Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling,” The Journal of Neuroscience, vol. 26, no. 2, pp. 355–364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. T. R. Keeble, M. M. Halford, C. Seaman et al., “The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum,” The Journal of Neuroscience, vol. 26, no. 21, pp. 5840–5848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Bagri, O. Marín, A. S. Plump et al., “Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain,” Neuron, vol. 33, no. 2, pp. 233–248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  138. T. Shu, V. Sundaresan, M. M. McCarthy, and L. J. Richards, “Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo,” The Journal of Neuroscience, vol. 23, no. 22, pp. 8176–8184, 2003. View at Scopus
  139. G. Ahmed, Y. Shinmyo, K. Ohta et al., et al., “Draxin inhibits axonal outgrowth through the netrin receptor DCC,” The Journal of Neuroscience, vol. 31, pp. 14018–14023, 2011.
  140. C. Gu, E. R. Rodriguez, D. V. Reimert et al., “Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development,” Developmental Cell, vol. 5, no. 1, pp. 45–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. R. J. Giger, J. F. Cloutier, A. Sahay et al., “Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins,” Neuron, vol. 25, no. 1, pp. 29–41, 2000. View at Scopus
  142. H. Chen, A. Bagri, J. A. Zupicich et al., “Neuropilin-2 regulates the development of select cranial and sensory nerves and hippocampal mossy fiber projections,” Neuron, vol. 25, no. 1, pp. 43–56, 2000. View at Scopus
  143. M. Piper, C. Plachez, O. Zalucki et al., “Neuropilin 1-Sema signaling regulates crossing of cingulate pioneering axons during development of the corpus callosum,” Cerebral Cortex, vol. 19, supplement 1, pp. i11–i21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. H. Kamiguchi, M. L. Hlavin, and V. Lemmon, “Role of L1 in neural development: what the knockouts tell us,” Molecular and Cellular Neurosciences, vol. 12, no. 1-2, pp. 48–55, 1998. View at Publisher · View at Google Scholar · View at Scopus
  145. T. Ren, J. Zhang, C. Plachez, S. Mori, and L. J. Richards, “Diffusion tensor magnetic resonance imaging and tract-tracing analysis of probst bundle structure in netrin1- and DCC-deficient mice,” The Journal of Neuroscience, vol. 27, no. 39, pp. 10345–10349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. T. Fothergill, A. L. Donahoo, A. Douglass, et al., “Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion,” Cereb Cortex, 2013. View at Publisher · View at Google Scholar
  147. G. López-Bendito, A. Cautinat, J. A. Sánchez et al., “Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation,” Cell, vol. 125, no. 1, pp. 127–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. K. Poirier, Y. Saillour, N. Bahi-Buisson et al., “Mutations in the neuronal β-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects,” Human Molecular Genetics, vol. 19, no. 22, pp. 4462–4473, 2010. View at Publisher · View at Google Scholar · View at Scopus