About this Journal Submit a Manuscript Table of Contents
ISRN Chemical Engineering
Volume 2012 (2012), Article ID 428974, 7 pages
http://dx.doi.org/10.5402/2012/428974
Research Article

Study of Cellulose Interaction with Concentrated Solutions of Sulfuric Acid

Chemical Department, Designer Energy Ltd., Bergman Street, Rehovot 76100, Israel

Received 5 October 2012; Accepted 4 November 2012

Academic Editors: C. Perego and I. Poulios

Copyright © 2012 Michael Ioelovich. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The effect of the concentration of sulfuric acid (SA) and temperature on structure and properties of cellulose (MCC) had been studied. Investigations showed that solubility of the initial sample at the room temperature increased gradually in the range of the acid concentration from 50 to 60 wt.% SA. When SA concentration reached 65 wt.%, then MCC sample dissolved completely. Cellulose regenerated from 65 wt.% SA had an amorphized structure and was characterized by high enzymatic digestibility. At increased temperature, 45°C, solubility of MCC in SA was raised, while yield and DP decreased. After treatment of MCC with hot 50–60 wt.% SA, the crystallinity degree of the obtained cellulose samples changed slightly, and these samples retained mainly the CI crystalline polymorph. However, when SA concentration reached 65 wt.%, then regenerated cellulose had CII crystalline polymorph, reduced crystallinity degree, and low DP. Using optimal conditions of the acidic treatment (57–60 wt.% SA, = 45°C;  h) in combination with the high-power disintegration permitted obtaining the CI nanocrystalline cellulose particles (NCP) having sizes 150–200 × 10–20 nm with the heightened yield (65–70%). These NCP can be used, for example, as reinforcing nanofillers for various composites.