About this Journal Submit a Manuscript Table of Contents
ISRN Communications and Networking
Volume 2012 (2012), Article ID 149505, 14 pages
http://dx.doi.org/10.5402/2012/149505
Research Article

QoSHVCP: Hybrid Vehicular Communications Protocol with QoS Prioritization for Safety Applications

1Center for Distributed and Mobile Computing, The School of Computing Sciences and Informatics, University of Cincinnati, Cincinnati, OH, USA
2Department of Applied Electronics, Roma Tre University, Rome, Italy
3Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA

Received 12 January 2012; Accepted 15 February 2012

Academic Editors: H. M. Sun and Y. M. Tseng

Copyright © 2012 Ahmad Mostafa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper introduces a hybrid communication paradigm for achieving seamless connectivity in Vehicular Ad hoc Networks (VANETs), wherein the connectivity is often affected by changes in the dynamic topology, vehicles’ speed, as well as the traffic density. Our proposed technique named QoS-oriented Hybrid Vehicular Communications Protocol (QoSHVCP) exploits both existing network infrastructure through a Vehicle-to-Infrastructure (V2I), as well as a traditional Vehicle-to-Vehicle (V2V) connection that could satisfy Quality-of-Service requirements. QoSHVCP is based on a V2V-V2I protocol switching algorithm, executed in a distributed fashion by each vehicle and is based on the cost function for alternative paths each time it needs to transmit a message. We utilize time delay as a performance metric and present the delay propagation rates when vehicles are transmitting high priority messages via QoSHVCP. Simulation results indicate that simultaneous usage of preexisting network infrastructure along with intervehicular communication provide lower delays, while maintaining the level of user’s performance. Our results show a great promise for their future use in VANETs.