About this Journal Submit a Manuscript Table of Contents
ISRN Dentistry
Volume 2012 (2012), Article ID 469019, 5 pages
http://dx.doi.org/10.5402/2012/469019
Research Article

pH and Antimicrobial Activity of Portland Cement Associated with Different Radiopacifying Agents

Department of Restorative Dentistry, Araraquara Dental School, São Paulo State University (UNESP), 14801-385 Araraquara, SP, Brazil

Received 29 June 2012; Accepted 13 September 2012

Academic Editors: F. Cairo and D. Grenier

Copyright © 2012 Juliane Maria Guerreiro-Tanomaru et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Torabinejad and T. R. Pitt Ford, “Root end filling materials: a review,” Endodontics and Dental Traumatology, vol. 12, no. 4, pp. 161–178, 1996. View at Scopus
  2. M. Parirokh and M. Torabinejad, “Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties,” Journal of Endodontics, vol. 36, no. 1, pp. 16–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Parirokh and M. Torabinejad, “Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action,” Journal of Endodontics, vol. 36, no. 3, pp. 400–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. A. Dreger, W. T. Felippe, J. F. Reyes-Carmona, G. S. Felippe, E. A. Bortoluzzi, and M. C. Felippe, “Mineral trioxide aggregate and portland cement promote biomineralization in vivo,” Journal of Endodontics, vol. 38, no. 3, pp. 324–329, 2012.
  5. M. G. de Oliveira, C. B. Xavier, F. F. Demarco, A. L. B. Pinheiro, A. T. Costa, and D. H. Pozza, “Comparative chemical study of MTA and Portland cements,” Brazilian Dental Journal, vol. 18, no. 1, pp. 3–7, 2007. View at Scopus
  6. K. S. Coomaraswamy, P. J. Lumley, and M. P. Hofmann, “Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system,” Journal of Endodontics, vol. 33, no. 3, pp. 295–298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Asakura, H. Satoh, M. Chiba et al., “Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony,” Journal of Occupational Health, vol. 51, no. 6, pp. 498–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. A. Bortoluzzi, J. M. Guerreiro-Tanomaru, M. Tanomaru-Filho, and M. A. H. Duarte, “Radiographic effect of different radiopacifiers on a potential retrograde filling material,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 108, no. 4, pp. 628–632, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Gomes Cornélio, L. P. Salles, M. Campos Da Paz, J. A. Cirelli, J. M. Guerreiro-Tanomaru, and M. Tanomaru Filho, “Cytotoxicity of Portland cement with different radiopacifying agents: a cell death study,” Journal of Endodontics, vol. 37, no. 2, pp. 203–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. G. De-Deus, V. Petruccelli, E. Gurgel-Filho, and T. Coutinho-Filho, “MTA versus Portland cement as repair material for furcal perforations: a laboratory study using a polymicrobial leakage model,” International Endodontic Journal, vol. 39, no. 4, pp. 293–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hasan Zarrabi, M. Javidi, M. Naderinasab, and M. Gharechahi, “Comparative evaluation of antimicrobial activity of three cements: new endodontic cement (NEC), mineral trioxide aggregate (MTA) and Portland,” Journal of Oral Science, vol. 51, no. 3, pp. 437–442, 2009. View at Scopus
  12. X. Zhu, Q. Wang, C. Zhang, G. S. P. Cheung, and Y. Shen, “Prevalence, phenotype, and genotype of Enterococcus faecalis isolated from saliva and root canals in patients with persistent apical periodontitis,” Journal of Endodontics, vol. 36, no. 12, pp. 1950–1955, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Nagayoshi, T. Nishihara, K. Nakashima, S. Iwaki, K. K. Chen, and M. Terashita, “Bactericidal effects of diode laser irradiation on Enterococcus faecalis using periapical lesion defect model,” ISRN Dentistry, vol. 2011, Article ID 870364, 2011. View at Publisher · View at Google Scholar
  14. S. M. Ozbek, A. Ozbek, and A. S. Erdogan, “Analysis of Enterococcus faecalis in samples from Turkish patients with primary endodontic infections and failed endodontic treatment by real-time PCR SYBR green method,” Journal of Applied Oral Science, vol. 17, no. 5, pp. 370–374, 2009. View at Scopus
  15. F. K. Çobankara, H. C. Altinöz, O. Erganiş, K. Kav, and S. Belli, “In vitro antibacterial activities of root-canal sealers by using two different methods,” Journal of Endodontics, vol. 30, no. 1, pp. 57–60, 2004. View at Scopus
  16. C. Estrela, L. L. Bammann, F. C. Pimenta, and J. D. Pécora, “Control of microorganisms in vitro by calcium hydroxide pastes,” International Endodontic Journal, vol. 34, no. 5, pp. 341–345, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Bodrumlu and T. Alaçam, “Evaluation of antimicrobial and antifungal effects of iodoform-integrating gutta-percha,” Journal of the Canadian Dental Association, vol. 72, no. 8, pp. 733–733, 2006. View at Scopus
  18. R. S. Tobias, “Antibacterial properties of dental restorative materials: a review,” International Endodontic Journal, vol. 21, no. 2, pp. 155–160, 1988. View at Scopus
  19. J. M. Tanomaru, M. Tanomaru-Filho, J. Hotta, E. Watanabe, and I. Y. Ito, “Antimicrobial activity of endodontic sealers based on calcium hydroxide and MTA,” Acta Odontológica Latinoamericana, vol. 21, no. 2, pp. 147–151, 2008. View at Scopus
  20. W. J. Begue and R. M. Kline, “The use of tetrazolium salts in bioauthographic procedures,” Journal of Chromatography A, vol. 64, no. 1, pp. 182–184, 1972. View at Scopus
  21. M. R. Leonardo, L. A. B. Da Silva, M. Tanomaru Filho, K. C. Bonifácio, and I. Y. Ito, “In vitro evaluation of antimicrobial activity of sealers and pastes used in endodontics,” Journal of Endodontics, vol. 26, no. 7, pp. 391–394, 2000. View at Scopus
  22. C. R. Sipert, R. P. Hussne, C. K. Nishiyama, and S. A. Torres, “In vitro antimicrobial activity of Fill Canal, Sealapex, Mineral Trioxide Aggregate, Portland cement and EndoRez,” International Endodontic Journal, vol. 38, no. 8, pp. 539–543, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Hungaro Duarte, A. C. C. De Oliveira Demarchi, J. C. Yamashita, M. C. Kuga, and S. De Campos Fraga, “pH and calcium ion release of 2 root-end filling materials,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 95, no. 3, pp. 345–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Al-Hezaimi, T. A. Al-Shalan, J. Naghshbandi, S. Oglesby, J. H. S. Simon, and I. Rotstein, “Antibacterial effect of two Mineral Trioxide Aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro,” Journal of Endodontics, vol. 32, no. 11, pp. 1053–1056, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Zehnder, E. Söderling, J. Salonen, and T. Waltimo, “Preliminary evaluation of bioactive glass S53P4 as an endodontic medication in vitro,” Journal of Endodontics, vol. 30, no. 4, pp. 220–224, 2004. View at Scopus
  26. J. Camilleri, “Evaluation of the physical properties of an endodontic Portland cement incorporating alternative radiopacifiers used as root-end filling material,” International Endodontic Journal, vol. 43, no. 3, pp. 231–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. P. McHugh, P. Zhang, S. Michalek, and P. D. Eleazer, “pH required to kill Enterococcus faecalis in vitro,” Journal of Endodontics, vol. 30, no. 4, pp. 218–219, 2004. View at Scopus
  28. C. Estrela, L. L. Bammann, C. R. Estrela, R. S. Silva, and J. D. Pécora, “Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal,” Brazilian Dental Journal, vol. 11, no. 1, pp. 3–9, 2000. View at Scopus
  29. C. S. Ribeiro, F. A. Kuteken, R. Hirata, and M. F. Z. Scelza, “Comparative evaluation of antimicrobial action of MTA, calcium hydroxide and portland cement,” Journal of Applied Oral Science, vol. 14, no. 5, pp. 330–333, 2006. View at Scopus
  30. D. M. Holt, J. D. Watts, T. J. Beeson, T. C. Kirkpatrick, and R. E. Rutledge, “The anti-microbial effect against Enterococcus faecalis and the compressive strength of two types of Mineral Trioxide Aggregate mixed with sterile water or 2% chlorhexidine liquid,” Journal of Endodontics, vol. 33, no. 7, pp. 844–847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. E. Odabaş, Ç. Çinar, G. Akça, I. Araz, T. Ulusu, and H. Yücel, “Short-term antimicrobial properties of mineral trioxide aggregate with incorporated silver-zeolite,” Dental Traumatology, vol. 27, no. 3, pp. 189–194, 2011. View at Publisher · View at Google Scholar · View at Scopus