About this Journal Submit a Manuscript Table of Contents
ISRN Dentistry
Volume 2012 (2012), Article ID 620951, 7 pages
http://dx.doi.org/10.5402/2012/620951
Research Article

A Comparative Study of the Removal of Smear Layer by Two Endodontic Irrigants and Nd:YAG Laser: A Scanning Electron Microscopic Study

1Department of Endodontics and Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 817463461, Iran
2Department of Periodontology and Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 817463461, Iran
3Department of Endodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 817463461, Iran
4School of Dentistry, Isfahan University of Medical Sciences, Isfahan 817463461, Iran

Received 25 March 2012; Accepted 27 May 2012

Academic Editors: Y. Abe and G. H. Sperber

Copyright © 2012 Seyed Mohsen Hasheminia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Torabinejad, R. Handysides, A. A. Khademi, and L. K. Bakland, “Clinical implications of the smear layer in endodontics: a review,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 94, no. 6, pp. 658–666, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. D. H. Pashley, “Smear layer: physiological considerations,” Operative Dentistry—Supplement, vol. 3, pp. 13–29, 1984. View at Scopus
  3. D. McComb and D. C. Smith, “A preliminary scanning electron microscopic study of root canals after endodontic procedures,” Journal of Endodontics, vol. 1, no. 7, pp. 238–242, 1975. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Diamond and R. Carrel, “The smear layer: a review of restorative progress,” Journal of Pedodontics, vol. 8, no. 3, pp. 219–226, 1984. View at Scopus
  5. V. J. Michelich, G. S. Schuster, and D. H. Pashley, “Bacterial penetration of human dentin in vitro,” Journal of Dental Research, vol. 59, no. 8, pp. 1398–1403, 1980. View at Scopus
  6. M. Brännström, “Smear layer: pathological and treatment considerations,” Operative Dentistry—Supplement, vol. 3, pp. 35–42, 1984. View at Scopus
  7. M. Pérez-Heredia, C. M. Ferrer-Luque, M. P. González-Rodríguez, F. J. Martín-Peinado, and S. González-López, “Decalcifying effect of 15% EDTA, 15% citric acid, 5% phosphoric acid and 2.5% sodium hypochlorite on root canal dentine,” International Endodontic Journal, vol. 41, no. 5, pp. 418–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Orstavik and M. Haapasalo, “Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules,” Endodontics & Dental Traumatology, vol. 6, no. 4, pp. 142–149, 1990. View at Scopus
  9. A. Bystrom and G. Sundqvist, “The antibacterial action of sodium hypochlorite and EDTA in 60 cases of endodontic therapy,” International Endodontic Journal, vol. 18, no. 1, pp. 35–40, 1985. View at Scopus
  10. B. G. Tidmarsh, “Acid-cleansed and resin-sealed root canals,” Journal of Endodontics, vol. 4, no. 4, pp. 117–121, 1978. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Abramovich and F. Goldberg, “The relationship of the root canal sealer to the dentine wall. An in vitro study using the scanning electron microscope,” Journal of the British Endodontic Society, vol. 9, no. 2, pp. 81–86, 1976. View at Scopus
  12. R. R. White, M. Goldman, and P. S. Lin, “The influence of the smeared layer upon dentinal tubule penetration by endodontic filling materials. Part II,” Journal of Endodontics, vol. 13, no. 8, pp. 369–374, 1987. View at Publisher · View at Google Scholar · View at Scopus
  13. L. M. Rubin, Z. Skobe, A. A. Krakow, and P. Gron, “The effect of instrumentation and flushing of freshly extracted teeth in endodontic therapy: a scanning electron microscope study,” Journal of Endodontics, vol. 5, no. 11, pp. 328–335, 1979. View at Publisher · View at Google Scholar · View at Scopus
  14. W. R. Moorer and P. R. Wesselink, “Factors promoting the tissue dissolving capability of sodium hypochlorite,” International Endodontic Journal, vol. 15, no. 4, pp. 187–196, 1982. View at Scopus
  15. B. E. Wayman, W. M. Kopp, G. J. Pinero, and E. P. Lazzari, “Citric and lactic acids as root canal irrigants in vitro,” Journal of Endodontics, vol. 5, no. 9, pp. 258–265, 1979. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Goldman, L. B. Goldman, R. Cavaleri, J. Bogis, and P. S. Lin, “The efficacy of several endodontic irrigating solutions: a scanning electron microscopic study: part 2,” Journal of Endodontics, vol. 8, no. 11, pp. 487–492, 1982. View at Publisher · View at Google Scholar · View at Scopus
  17. R. L. Erickson, “Surface interactions of dentin adhesive materials,” Operative Dentistry, vol. 5, pp. 81–94, 1992. View at Scopus
  18. B. Van Meerbeek, P. Lambrechts, S. Inokoshi, M. Braem, and G. Vanherle, “Factors affecting adhesion to mineralized tissues,” Operative Dentistry, vol. 5, pp. 111–124, 1992. View at Scopus
  19. N. V. Ballal, M. Kundabala, and K. S. Bhat, “A comparative evaluation of postobturation apical seal following intracanal irrigation with maleic acid and EDTA: a dye leakage under vacuum study,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 109, no. 3, pp. e126–e130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Nygaardostby, “Chelating in root canal therapy,” Odontologisk Tidskrift, vol. 65, article 31, 1957.
  21. R. S. Yamada, A. Armas, M. Goldman, and P. S. Lin, “A scanning electron microscopic comparison of a high volume final flush with several irrigating solutions: part 3,” Journal of Endodontics, vol. 9, no. 4, pp. 137–142, 1983. View at Publisher · View at Google Scholar · View at Scopus
  22. L. B. Goldman, M. Goldman, J. H. Kronman, and P. S. Lin, “The efficacy of several irrigating solutions for endodontics: a scanning electron microscopic study,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 52, no. 2, pp. 197–204, 1981. View at Scopus
  23. R. R. White, M. Goldman, and P. Sun Lin, “The influence of the smeared layer upon dentinal tubule penetration by plastic filling materials,” Journal of Endodontics, vol. 10, no. 12, pp. 558–562, 1984. View at Scopus
  24. J. A. Weichman and F. M. Johnson, “Laser use in endodontics. A preliminary investigation,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 31, no. 3, pp. 416–420, 1971. View at Scopus
  25. F. H. Takeda, T. Harashima, Y. Kimura, and K. Matsumoto, “A comparative study of the removal of smear layer by three endodontic irrigants and two types of laser,” International Endodontic Journal, vol. 32, no. 1, pp. 32–39, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. M. F. Ayad, “Effects of rotary instrumentation and different etchants on removal of smear layer on human dentin,” Journal of Prosthetic Dentistry, vol. 85, no. 1, pp. 67–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Levy, “Cleaning and shaping the root canal with a Nd:YAG laser beam: a comparative study,” Journal of Endodontics, vol. 18, no. 3, pp. 123–127, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. H. E. Goodis, J. M. White, S. J. Marshall, and G. W. Marshall Jr., “Scanning electron microscopic examination of intracanal wall dentin: hand versus laser treatment,” Scanning Microscopy, vol. 7, no. 3, pp. 979–987, 1993. View at Scopus
  29. A. Khademi, M. Yazdizadeh, and M. Feizianfard, “Determination of the minimum instrumentation size for penetration of irrigants to the apical third of root canal systems,” Journal of Endodontics, vol. 32, no. 5, pp. 417–420, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. L. A. B. da Silva, A. C. M. Sanguino, C. T. Rocha, M. R. Leonardo, and R. A. B. Silva, “Scanning electron microscopic preliminary study of the efficacy of smear clear and EDTA for smear layer removal after root canal instrumentation in permanent teeth,” Journal of Endodontics, vol. 34, no. 12, pp. 1541–1544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. H. Sen, O. Erturk, and B. Piskin, “The effect of different concentrations of EDTA on instrumented root canal walls,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 108, no. 4, pp. 622–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. K. K. Wadhwani, A. P. Tikku, A. Chandra, and V. K. Shakya, “A comparative evaluation of smear layer removal using two rotary instrument systems with ethylenediaminetetraacetic acid in different states: a SEM study,” Indian Journal of Dental Research, vol. 22, no. 1, pp. 10–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Calt and A. Serper, “Time-dependent effects of EDTA on dentin structures,” Journal of Endodontics, vol. 28, no. 1, pp. 17–19, 2002. View at Scopus
  34. S. G. Prabhu, N. Rahim, K. S. Bhat, and J. Mathew, “Comparison of removal of endodontic smear layer using sodium hypochlorite, EDTA and different concentrations of maleic acid: a SEM study,” Endodontology, vol. 15, pp. 20–25, 2003.
  35. N. V. Ballal, S. Kandian, K. Mala, K. S. Bhat, and S. Acharya, “Comparison of the efficacy of maleic acid and ethylenediaminetetraacetic acid in smear layer removal from instrumented human root canal: a scanning electron microscopic study,” Journal of Endodontics, vol. 35, no. 11, pp. 1573–1576, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. N. V. Ballal, M. Kundabala, S. Bhat, N. Rao, and B. S. S. Rao, “A comparative in vitro evaluation of cytotoxic effects of EDTA and maleic acid: root canal irrigants,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 108, no. 4, pp. 633–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Goya, R. Yamazaki, Y. Tomita, Y. Kimura, and K. Matsumoto, “Effects of pulsed Nd:YAG laser irradiation on smear layer at the apical stop and apical leakage after obturation,” International Endodontic Journal, vol. 33, no. 3, pp. 266–271, 2000. View at Scopus
  38. F. H. Takeda, T. Harashima, Y. Kimura, and K. Matsumoto, “Comparative study about the removal of smear layer by three types of laser devices,” Journal of Clinical Laser Medicine and Surgery, vol. 16, no. 2, pp. 117–122, 1998. View at Scopus
  39. T. Gurbuz, Y. Ozdemir, N. Kara, C. Zehir, and M. Kurudirek, “Evaluation of root canal dentine after Nd:YAG laser irradiation and treatment with five different irrigation solutions: a preliminary study,” Journal of Endodontics, vol. 34, no. 3, pp. 318–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Zhang, Y. Kimura, K. Matsumoto, T. Harashima, and H. Zhou, “Effects of pulsed Nd:YAG laser irradiation on root canal wall dentin with different laser initiators,” Journal of Endodontics, vol. 24, no. 5, pp. 352–355, 1998. View at Scopus
  41. F. Barbakow, O. Peters, and L. Havranek, “Effects of Nd:YAG lasers on root canal walls: a light and scanning electron microscopic study,” Quintessence International, vol. 30, no. 12, pp. 837–845, 1999. View at Scopus
  42. B. H. Kivanç, O. I. A. Ulusoy, and G. Görgül, “Effects of Er:YAG laser and Nd:YAG laser treatment on the root canal dentin of human teeth: a SEM study,” Lasers in Medical Science, vol. 23, no. 3, pp. 247–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. H. Khademi and M. Faizianfard, “The effect of EDTA and citric acid on smear layer removal of mesial canals of first mandibular molars: a SEM study,” Journal of Research in Medical Sciences, vol. 9, pp. 27–35, 2004.