About this Journal Submit a Manuscript Table of Contents
ISRN Dentistry
Volume 2013 (2013), Article ID 579039, 8 pages
http://dx.doi.org/10.1155/2013/579039
Research Article

Long-Term Fluoride Exchanges at Restoration Surfaces and Effects on Surface Mechanical Properties

1Faculty of Dentistry, The University of Sydney, Australia
2Westmead Oral Health Centre, Level 1, Faculty Office, Westmead Hospital, Darcy Road, Westmead, Sydney, NSW 2145, Australia
3Faculty of Dentistry, Tanta University, Egypt

Received 23 April 2013; Accepted 16 July 2013

Academic Editors: M. Özcan and D. Wray

Copyright © 2013 Steven Naoum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Ten Cate, “Current concepts on the theories of the mechanism of action of fluoride,” Acta Odontologica Scandinavica, vol. 57, no. 6, pp. 325–329, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. C. González-Cabezas, “The chemistry of caries: remineralization and demineralization events with direct clinical relevance,” Dental Clinics of North America, vol. 54, no. 3, pp. 469–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Fejerskov and B. H. Clarkson, “Dynamics of caries lesion formation,” in Fluoride in Dentistry, O. Fejerskov, J. Ekstrand, and B. A. Burt, Eds., pp. 187–213, Copenhagen, Munksgaard, Danmark, 1996.
  4. E. Kidd and S. Joyston-Bechal, Aetiology of Dental Caries Essentials of Dental Caries. Disease and Its Management, Oxford University Press, New York, NY, USA, 3rd edition, 2005.
  5. W. Evans, “Conference report: a joint IADR/ORCA international symposium- fluorides: mechanisms of action and recommendations for use,” Journal of Dental Research, vol. 68, no. 7, pp. 1215–1216, 1989. View at Publisher · View at Google Scholar
  6. V. Qvist, A. Poulsen, P. T. Teglers, and I. A. Mjör, “Fluorides leaching from restorative materials and the effect on adjacent teeth,” International Dental Journal, vol. 60, no. 3, pp. 156–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Qvist, L. Laurberg, A. Poulsen, and P. T. Teglers, “Class II restorations in primary teeth: 7-year study on three resin-modified glass ionomer cements and a compomer,” European Journal of Oral Sciences, vol. 112, no. 2, pp. 188–196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Qvist, E. Manscher, and P. T. Teglers, “Resin-modified and conventional glass ionomer restorations in primary teeth: 8-Year results,” Journal of Dentistry, vol. 32, no. 4, pp. 285–294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Wiegand, W. Buchalla, and T. Attin, “Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation,” Dental Materials, vol. 23, no. 3, pp. 343–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Tyas, “Clinical studies related to glass ionomers,” Operative Dentistry, vol. 5, pp. 191–198, 1992. View at Scopus
  11. F. R. Tay, E. L. Pashley, C. Huang et al., “The glass-ionomer phase in resin-based restorative materials,” Journal of Dental Research, vol. 80, no. 9, pp. 1808–1812, 2001. View at Scopus
  12. T. A. Roberts, K. Miyai, K. Ikemura, K. Fuchigami, and T. Kitamura, “Fluoride ion sustained release preformed glass ionomer filler and dental composite containing the same name,” Tech. Rep., 1999, United States Patent Number 5883 153.
  13. V. V. Gordan, E. Mondragon, R. E. Watson, C. Garvan, and I. A. Mjör, “A clinical evaluation of a self-etching primer and a giomer restorative material: results at eight years,” Journal of the American Dental Association, vol. 138, no. 5, pp. 621–627, 2007. View at Scopus
  14. S. Naoum, A. Ellakwa, F. Martin, and M. Swain, “Fluoride release, recharge and mechanical property stability of various fluoride-containing resin composites,” Operative Dentistry, vol. 36, no. 4, pp. 422–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Attar and M. D. Turgut, “Fluoride release and uptake capacities of fluoride-releasing restorative materials,” Operative Dentistry, vol. 28, no. 4, pp. 395–402, 2003. View at Scopus
  16. L. Angker, C. Nockolds, M. V. Swain, and N. Kilpatrick, “Correlating the mechanical properties to the mineral content of carious dentine—a comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals,” Archives of Oral Biology, vol. 49, no. 5, pp. 369–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Chung, A. U. J. Yap, W. K. Koh, K. T. Tsai, and C. T. Lim, “Measurement of Poisson's ratio of dental composite restorative materials,” Biomaterials, vol. 25, no. 13, pp. 2455–2460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Mejàre, C. Källestål, H. Stenlund, and H. Johansson, “Caries development from 11 to 22 years of age: a prospective radiographic study. Prevalence and distribution,” Caries Research, vol. 32, no. 1, pp. 10–16, 1998. View at Scopus
  19. I. Mejàre and H. Stenlund, “Caries rates for the mesial surface of the first permanent molar and the distal surface of the second primary molar from 6 to 12 years of age in Sweden,” Caries Research, vol. 34, no. 6, pp. 454–461, 2000. View at Scopus
  20. H. Hintze, “Caries behaviour in Danish teenagers: a longitudinal radiographic study,” International Journal of Paediatric Dentistry, vol. 7, no. 4, pp. 227–234, 1997. View at Scopus
  21. W. A. El-Badrawy, B. W. Leung, O. El-Mowafy, J. H. Rubo, and M. H. Rubo, “Evaluation of proximal contacts of posterior composite restorations with 4 placement techniques,” Journal Canadian Dental Association, vol. 69, no. 3, pp. 162–167, 2003. View at Scopus
  22. K. J. Toumba and M. E. Curzon, “Slow-release fluoride,” Caries Research, vol. 27, pp. 43–46, 1993. View at Scopus
  23. T. Itota, T. E. Carrick, M. Yoshiyama, and J. F. McCabe, “Fluoride release and recharge in giomer, compomer and resin composite,” Dental Materials, vol. 20, no. 9, pp. 789–795, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. F. R. Tay, E. L. Pashley, C. Huang et al., “The glass-ionomer phase in resin-based restorative materials,” Journal of Dental Research, vol. 80, no. 9, pp. 1808–1812, 2001. View at Scopus
  25. R. J. De Moor, R. M. Verbeeck, and E. A. De Maeyer, “Fluoride release profiles of restorative glass ionomer formulations,” Dental Materials, vol. 12, no. 2, pp. 88–95, 1996. View at Scopus
  26. L. Han, E. Cv, M. Li et al., “Effect of fluoride mouth rinse on fluoride releasing and recharging from aesthetic dental materials,” Dental Materials Journal, vol. 21, no. 4, pp. 285–295, 2002. View at Scopus
  27. T. Attin, W. Buchalla, C. Siewert, and E. Hellwig, “Fluoride release/uptake of polyacid-modified resin composites (compomers) in neutral and acidic buffer solutions,” Journal of Oral Rehabilitation, vol. 26, no. 5, pp. 388–393, 1999. View at Scopus
  28. A. J. Preston, E. A. Agalamanyi, S. M. Higham, and L. H. Mair, “The recharge of esthetic dental restorative materials with fluoride in vitro—two years' results,” Dental Materials, vol. 19, no. 1, pp. 32–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Williams, R. W. Billington, and G. J. Pearson, “A long term study of fluoride release from metal-containing conventional and resin-modified glass-ionomer cements,” Journal of Oral Rehabilitation, vol. 28, no. 1, pp. 41–47, 2001. View at Scopus
  30. J. L. Drummond, K. Andronova, L. I. Al-Turki, and L. D. Slaughter, “Leaching and mechanical properties characterization of dental composites,” Journal of Biomedical Materials Research B, vol. 71, no. 1, pp. 172–180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. W. Nicholson and B. Czarnecka, “The release of ions by compomers under neutral and acidic conditions,” Journal of Oral Rehabilitation, vol. 31, no. 7, pp. 665–670, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. J. Preston, S. M. Higham, E. A. Agalamanyi, and L. H. Mair, “Fluoride recharge of aesthetic dental materials,” Journal of Oral Rehabilitation, vol. 26, no. 12, pp. 936–940, 1999. View at Scopus
  33. X. Xu and J. O. Burgess, “Compressive strength, fluoride release and recharge of fluoride-releasing materials,” Biomaterials, vol. 24, no. 14, pp. 2451–2461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. J. C. De Witte, E. A. P. De Maeyer, and R. M. H. Verbeeck, “Surface roughening of glass ionomer cements by neutral NaF solutions,” Biomaterials, vol. 24, no. 11, pp. 1995–2000, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. P. C. Hadley, R. W. Billington, G. J. Pearson, and J. A. Williams, “Effect of monovalent ions in glass ionomer cements on their interaction with sodium fluoride solution,” Biomaterials, vol. 21, no. 1, pp. 97–102, 2000. View at Publisher · View at Google Scholar · View at Scopus