About this Journal Submit a Manuscript Table of Contents
ISRN Dermatology
Volume 2012 (2012), Article ID 828146, 12 pages
http://dx.doi.org/10.5402/2012/828146
Review Article

Cell Proliferation in Cutaneous Malignant Melanoma: Relationship with Neoplastic Progression

Department of Dermatopathology, University Hospital of Liège, 4000 Liège, Belgium

Received 4 November 2011; Accepted 30 November 2011

Academic Editors: S.-C. Chao and C. Johansen

Copyright © 2012 G. E. Piérard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Uhoda, P. Quatresooz, I. Fumal, A. F. Nikkels, C. Piérard-Franchimont, and G. E. Piérard, “Updating trends in cutaneous cancers in south-east Belgium,” Oncology Reports, vol. 12, no. 1, pp. 111–114, 2004. View at Scopus
  2. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics,” A Cancer Journal for Clinicians, vol. 57, no. 1, pp. 43–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Verdecchia, S. Francisci, H. Brenner et al., “Recent cancer survival in Europe: a 2000–02 period analysis of EUROCARE-4 data,” Lancet Oncology, vol. 8, no. 9, pp. 784–796, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. N. Crowson, C. M. Magro, and M. C. Mihm, “Prognosticators of melanoma, the melanoma report, and the sentinel lymph node,” Modern Pathology, vol. 19, no. 2, pp. S71–S87, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. B. R. Smoller, “Histologic criteria for diagnosing primary cutaneous malignant melanoma,” Modern Pathology, vol. 19, no. 2, pp. S34–S40, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. L. Brochez, E. Verhaeghe, E. Grosshans et al., “Inter-observer variation in the histopathological diagnosis of clinically suspicious pigmented skin lesions,” Journal of Pathology, vol. 196, no. 4, pp. 459–466, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. P. Quatresooz, J. E. Arrese, C. Pierard-Franchimont, and G. E. Pierard, “Immunohistochemical aid at risk stratification of melanocytic neoplasms,” International Journal of Oncology, vol. 24, no. 1, pp. 211–216, 2004. View at Scopus
  8. N. Claessens, G. E. Piérard, C. Piérard-Franchimont, J. E. Arrese, and P. Quatresooz, “Immunohistochemical detection of incipient melanoma micrometastases. Relationship with sentinel lymph node involvement,” Melanoma Research, vol. 15, no. 2, pp. 107–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Plaza, D. Suster, and D. Perez-Montiel, “Expression of immunohistochemical markers in primary and metastatic malignant melanoma: a comparative study in 70 patients using a tissue microarray technique,” Applied Immunohistochemistry and Molecular Morphology, vol. 15, no. 4, pp. 421–425, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. J. Ohsie, G. P. Sarantopoulos, A. J. Cochran, and S. W. Binder, “Immunohistochemical characteristics of melanoma,” Journal of Cutaneous Pathology, vol. 35, no. 5, pp. 433–444, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. P. Quatresooz, C. Piérard-Franchimont, and G. E. Piérard, “Highlighting the immunohistochemical profile of melanocytomas,” Oncology Reports, vol. 19, no. 6, pp. 1367–1372, 2008. View at Scopus
  12. P. Quatresooz, C. Pierard-Franchimont, A. Rorive, et al., “Molecular histology on the diagnostic cutting edge between malignant melanomas and cutaneous melanocytomas,” Oncology Reports, vol. 22, no. 6, pp. 1263–1267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Carlson, J. S. Ross, A. Slominski et al., “Molecular diagnostics in melanoma,” Journal of the American Academy of Dermatology, vol. 52, no. 5, pp. 743–775, 2005. View at Publisher · View at Google Scholar · View at PubMed
  14. L. A. Fecher, S. D. Cummings, M. J. Keefe, and R. M. Alani, “Toward a molecular classification of melanoma,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1606–1620, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. T. Schatton, G. F. Murphy, N. Y. Frank et al., “Identification of cells initiating human melanomas,” Nature, vol. 451, no. 7176, pp. 345–349, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. M. A. Reginster, C. Piérard-Franchimont, G. E. Piérard, et al., “Molecular dermatopathology in malignant melanoma,” Dermatology Research and Practice, vol. 2012, Article ID 684032, 6 pages, 2012. View at Publisher · View at Google Scholar · View at PubMed
  17. D. Fang, T. K. Nguyen, K. Leishear et al., “A tumorigenic subpopulation with stem cell properties in melanomas,” Cancer Research, vol. 65, no. 20, pp. 9328–9337, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. M. Grichnik, J. A. Burch, R. D. Schulteis et al., “Melanoma, a tumor based on a mutant stem cell?” Journal of Investigative Dermatology, vol. 126, no. 1, pp. 142–153, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. K. Buac and W. J. Pavan, “Stem cells of the melanocyte lineage,” Cancer Biomarkers, vol. 3, no. 4-5, pp. 203–209, 2007. View at Scopus
  20. W. M. Klein, B. P. Wu, S. Zhao, H. Wu, A. J. P. Klein-Szanto, and S. R. Tahan, “Increased expression of stem cell markers in malignant melanoma,” Modern Pathology, vol. 20, no. 1, pp. 102–107, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. T. Schatton and M. H. Frank, “Cancer stem cells and human malignant melanoma,” Pigment Cell and Melanoma Research, vol. 21, no. 1, pp. 39–55, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. G. Rappa, O. Fodstad, and A. Lorico, “The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma,” Stem Cells, vol. 26, no. 12, pp. 3008–3017, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. P. Quatresooz, G. E. Pierard, C. Pierard-Franchimont et al., “Molecular pathways supporting the proliferation staging of malignant melanoma,” International Journal of Molecular Medicine, vol. 24, no. 3, pp. 295–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Quatresooz and G. E. Piérard, “Malignant melanoma: from cell kinetics to micrometastases,” American Journal of Clinical Dermatology, vol. 12, no. 2, pp. 77–86, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. D. C. Bodenham, “A study of 650 observed malignant melanomas in the South-West region,” Annals of the Royal College of Surgeons of England, vol. 43, no. 4, pp. 218–239, 1968. View at Scopus
  26. L. Holmgren, M. S. O'Reilly, and J. Folkman, “Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression,” Nature Medicine, vol. 1, no. 2, pp. 149–153, 1995. View at Scopus
  27. G. E. Piérard, C. Piérard-Franchimont, M. A. Reginster, et al., “Smouldering malignant melanoma and metastatic dormancy. An update and review,” Dermatology Research and Practice, vol. 2012, Article ID 461278, 6 pages, 2012. View at Publisher · View at Google Scholar · View at PubMed
  28. A. Mantovani, “Molecular pathways linking inflammation and cancer,” Current Molecular Medicine, vol. 10, no. 4, pp. 369–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. E. Goss and A. F. Chambers, “Does tumour dormancy offer a therapeutic target?” Nature Reviews Cancer, vol. 10, no. 12, pp. 871–877, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. Z. J. Yang, C. Chee, S. Huang, and F. Sinicrope, “Autophagy modulation for cancer therapy,” Cancer Biology and Therapy, vol. 11, no. 2, pp. 169–176, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. J. Eyles, A. L. Puaux, X. Wang et al., “Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma,” Journal of Clinical Investigation, vol. 120, no. 6, pp. 2030–2039, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. Rocken, “Early tumor dissemination, but late metastasis: insights into tumor dormancy,” Journal of Clinical Investigation, vol. 120, no. 6, pp. 1800–1803, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. H. P. Soyer, “Ki67 immunostaining in melanocytic skin tumors. Correlation with histologic parameters,” Journal of Cutaneous Pathology, vol. 18, no. 4, pp. 264–272, 1991. View at Scopus
  34. C. Piérard-Franchimont, J. E. Arrese, A. F. Nikkels, W. Al-Saleh, P. Delvenne, and G. E. Piérard, “Factor XIIIa-positive dendrocytes and proliferative activity of cutaneous cancers,” Virchows Archiv, vol. 429, no. 1, pp. 43–48, 1996. View at Scopus
  35. L. A. I. Talve, Y. U. I. Collan, and T. O. Ekfors, “Nuclear morphometry, immunohistochemical staining with Ki-67 antibody and mitotic index in the assessment of proliferative activity and prognosis of primary malignant melanomas of the skin,” Journal of Cutaneous Pathology, vol. 23, no. 4, pp. 335–343, 1996. View at Scopus
  36. L. E. Sparrow, D. R. English, J. M. Taran, and P. J. Heenan, “Prognostic significance of MIB-1 proliferative activity in thin melanomas and immunohistochemical analysis of MIB-1 proliferative activity in melanocytic tumors,” American Journal of Dermatopathology, vol. 20, no. 1, pp. 12–16, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Niezabitowski, K. Czajecki, J. Rys et al., “Prognostic evaluation of cutaneous malignant melanoma: a clinicopathologic and immunohistochemical study,” Journal of Surgical Oncology, vol. 70, no. 3, pp. 150–160, 1999. View at Publisher · View at Google Scholar
  38. P. Quatresooz, C. Pierard-Franchimont, P. Paquet, and G. E. Pierard, “Angiogenic fast-growing melanomas and their micrometastases,” European Journal of Dermatology, vol. 20, no. 3, pp. 302–307, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. A. Väisänen, P. Kuvaja, M. Kallioinen, and T. Turpeenniemi-Hujanen, “A prognostic index in skin melanoma through the combination of matrix metalloproteinase-2, Ki67, and p53,” Human Pathology, vol. 42, no. 8, pp. 1103–1111, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. D. Lipsker, “Growth rate, early detection, and prevention of melanoma: melanoma epidemiology revisited and future challenges,” Archives of Dermatology, vol. 142, no. 12, pp. 1638–1640, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. W. Liu, J. P. Dowling, W. K. Murray et al., “Rate of growth in melanomas: characteristics and associations of rapidly growing melanomas,” Archives of Dermatology, vol. 142, no. 12, pp. 1551–1558, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. D. Lipsker, F. Engel, B. Cribier, M. Velten, and G. Hedelin, “Trends in melanoma epidemiology suggest three different types of melanoma,” British Journal of Dermatology, vol. 157, no. 2, pp. 338–343, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. R. MacKie, C. Bray, J. Vestey et al., “Melanoma incidence and mortality in Scotland 1979–2003,” British Journal of Cancer, vol. 96, no. 11, pp. 1772–1777, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. I. Zalaudek, A. A. Marghoob, A. Scope et al., “Three roots of melanoma,” Archives of Dermatology, vol. 144, no. 10, pp. 1375–1379, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. R. Boni, A. Doguoglu, G. Burg, et al., “MIB-1 immunoreactivity correlates with metastatic dissemination in primary thick cutaneous melanoma,” Journal of the American Academy of Dermatology, vol. 35, no. 3, pp. 416–418, 1996. View at Scopus
  46. G. E. Piérard and C. Piérard-Franchimont, “Stochastic relationship between the growth fraction and vascularity of thin malignant melanomas,” European Journal of Cancer, vol. 33, no. 11, pp. 1888–1892, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Piérard-Franchimont, F. Henry, O. Heymans, and G. E. Piérard, “Vascular retardation in dormant growth-stunted malignant melanomas,” International Journal of Molecular Medicine, vol. 4, no. 4, pp. 403–406, 1999. View at Scopus
  48. O. Straume, L. Sviland, and L. A. Akslen, “Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma,” Clinical Cancer Research, vol. 6, no. 5, pp. 1845–1853, 2000. View at Scopus
  49. S. O. Frahm, C. Schubert, R. Parwaresch, and P. Rudolph, “High proliferative activity may predict early metastasis of thin melanomas,” Human Pathology, vol. 32, no. 12, pp. 1376–1381, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. P. Quatresooz, P. Paquet, T. Hermanns-Lê, and G. E. Piérard, “Molecular mapping of factor XIIIa-enriched dendrocytes in the skin,” International Journal of Molecular Medicine, vol. 22, no. 4, pp. 403–409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Quatresooz, M. A. Reginster, and G. E. Piérard, “The ‘malignant melanoma microecosystem’: immunohistopathological insights into the stromal cell phenotype. A review,” Experimental and Therapeutic Medicine, vol. 2, no. 3, pp. 379–384, 2011. View at Publisher · View at Google Scholar
  52. G. E. Pierard, C. Pierard-Franchimont, C. Henry, and M. Lapiere, “The proliferative activity of cells of malignant melanomas,” American Journal of Dermatopathology, vol. 6, no. 1, pp. S317–S323, 1984. View at Scopus
  53. C. Schmoeckel and O. Braun-Falco, “Prognostic index in malignant melanoma,” Archives of Dermatology, vol. 114, no. 6, pp. 871–873, 1978. View at Publisher · View at Google Scholar · View at Scopus
  54. B. J. Averbook, “Mitotic rate and sentinel lymph node tumor burden topography: integration into melanoma staging and stratification use in clinical trials,” Journal of Clinical Oncology, vol. 29, no. 16, pp. 2137–2141, 2011. View at Publisher · View at Google Scholar · View at PubMed
  55. H. Bösmüller, S. Haitchi-Petnehazy, T. Hintringer, et al., “Mitosis in early invasive malignant melanoma: how reliable is histogenetic classification at stage pT1?” Pathologie. In press.
  56. J. F. Thompson, S.-J. Soong, C. M. Balch et al., “Prognostic significance of mitotic rate in localized primary cutaneous melanoma: an analysis of patients in the multi-institutional american joint committee on cancer melanoma staging database,” Journal of Clinical Oncology, vol. 29, no. 16, pp. 2199–2205, 2011. View at Publisher · View at Google Scholar · View at PubMed
  57. S. M. Ruhoy, S. E. Kolker, and T. C. Murry, “Mitotic activity within dermal melanocytes of benign melanocytic nevi: a study of 100 cases with clinical follow-up,” American Journal of Dermatopathology, vol. 33, no. 2, pp. 167–172, 2011. View at Publisher · View at Google Scholar · View at PubMed
  58. K. Shibata, M. Inagaki, and K. Ajiro, “Mitosis-specific histone H3 phosphorylation in vitro in nucleosome structures,” European Journal of Biochemistry, vol. 192, no. 1, pp. 87–93, 1990. View at Publisher · View at Google Scholar · View at Scopus
  59. T. K. Fung, T. M. Hoi, and R. Y. C. Poon, “Specialized roles of the two mitotic cyclins in somatic cells: cydin A as an activator of M phase-promoting factor,” Molecular Biology of the Cell, vol. 18, no. 5, pp. 1861–1873, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. M. Dean, T. Fojo, and S. Bates, “Tumour stem cells and drug resistance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 275–284, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. J. M. Topczewska, L. M. Postovit, N. V. Margaryan et al., “Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness,” Nature Medicine, vol. 12, no. 8, pp. 925–932, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. E. Wang, S. Voiculescu, I. C. Le Poole et al., “Clonal persistence and evolution during a decade of recurrent melanoma,” Journal of Investigative Dermatology, vol. 126, no. 6, pp. 1372–1377, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. E. Monzani, F. Facchetti, E. Galmozzi et al., “Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential,” European Journal of Cancer, vol. 43, no. 5, pp. 935–946, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. A. Schreder, G. E. Piérard, P. Paquet, M. A. Reginster, C. Pierard-Franchimont, and P. Quatresooz, “Facing towards epidermal stem cells,” International Journal of Molecular Medicine, vol. 26, no. 2, pp. 171–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Chandrasekaran and L. A. Delouise, “Enriching and characterizing cancer stem cell sub-populations in the WM115 melanoma cell line,” Biomaterials, vol. 32, pp. 9316–9327, 2011.
  67. R. P. Shanesmith, C. Smart, D. S. Cassarino, et al., “Tissue microarray analysis of ezrin, KBA62, CD166, nestin, and p-Akt in melanoma versus banal and atypical nevi, and non melanocytic lesions,” The American Journal of Dermatopathology, vol. 33, no. 7, pp. 663–668, 2011.
  68. C. E. Wong, C. Paratore, M. T. Dours-Zimmermann et al., “Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin,” Journal of Cell Biology, vol. 175, no. 6, pp. 1005–1015, 2006. View at Publisher · View at Google Scholar · View at PubMed
  69. H. Yu, D. Fang, S. M. Kumar et al., “Isolation of a novel population of multipotent adult stem cells from human hair follicles,” American Journal of Pathology, vol. 168, no. 6, pp. 1879–1888, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. J. G. Toma, M. Akhavan, K. J. Fernandes et al., “Isolation of multipotent adult stem cells from the dermis of mammalian skin,” Nature Cell Biology, vol. 3, no. 9, pp. 778–784, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. M. J. Hendrix, E. A. Seftor, A. R. Hess, and R. E. B. Seftor, “Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma,” Nature Reviews Cancer, vol. 3, no. 6, pp. 411–421, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. A. J. Simpson, O. L. Caballero, A. Jungbluth, Y. T. Chen, and L. J. Old, “Cancer/testis antigens, gametogenesis and cancer,” Nature Reviews Cancer, vol. 5, no. 8, pp. 615–625, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. T. Rothhammer, F. Bataille, T. Spruss, G. Eissner, and A. K. Bosserhoff, “Functional implication of BMP4 expression on angiogenesis in malignant melanoma,” Oncogene, vol. 26, no. 28, pp. 4158–4170, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. T. Reya and H. Clevers, “Wnt signalling in stem cells and cancer,” Nature, vol. 434, no. 7035, pp. 843–850, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. S. J. Ralph, “An update on malignant melanoma vaccine research: insights into mechanisms for improving the design and potency of melanoma therapeutic vaccines,” American Journal of Clinical Dermatology, vol. 8, no. 3, pp. 123–141, 2007. View at Publisher · View at Google Scholar
  76. S. J. Ralph, “An update on malignant melanoma vaccine research: insights into mechanisms for improving the design and potency of melanoma therapeutic vaccines,” American Journal of Clinical Dermatology, vol. 8, no. 3, pp. 123–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. M. Terando, M. B. Faries, and D. L. Morton, “Vaccine therapy for melanoma: current status and future directions,” Vaccine, vol. 25, no. 2, pp. 4–16, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. P. Lorigan, T. Eisen, and A. Hauschild, “Systemic therapy for metastatic malignant melanoma—from deeply disappointing to bright future?” Experimental Dermatology, vol. 17, no. 5, pp. 383–394, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. M. Malumbres and M. Barbacid, “To cycle or not to cycle: a critical decision in cancer,” Nature Reviews Cancer, vol. 1, no. 3, pp. 222–231, 2001. View at Scopus
  80. J. Georgieva, P. Sinha, and D. Schadendorf, “Expression of cyclins and cyclin dependent kinases in human benign and malignant melanocytic lesions,” Journal of Clinical Pathology, vol. 54, no. 3, pp. 229–235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. V. A. Florenes, G. M. Maelandsmo, R. Faye, et al., “Cyclin A expression in superficial spreading malignant melanomas correlates with clinical outcome,” The Journal of Pathology, vol. 195, pp. 530–536, 2001.
  82. V. A. Florenes, G. M. Maelandsmo, R. S. Faye, J. M. Nesland, and R. Holm, “Levels of cyclin d1 and d3 in malignant melanoma: deregulated cyclin D3 expression is associated with poor clinical outcome in superficial melanoma,” Clinical Cancer Research, vol. 6, no. 9, pp. 3614–3620, 2000.
  83. E. S. Bales, C. Deitrich, D. Bandyopadhyay, et al., “High levels of expression of p27KIP1 and cyclin E in invasive primary malignant melanomas,” Journal of Investigative Dermatology, vol. 113, pp. 1039–1046, 1999.
  84. L. Talve, I. Sauroja, Y. Collan, K. Punnonen, and T. Ekfors, “Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage,” International Journal of Cancer, vol. 74, no. 3, pp. 255–259, 1997. View at Publisher · View at Google Scholar
  85. S. J. Pavey, M. C. Cummings, D. C. Whiteman et al., “Loss of p16 expression is associated with histological features of melanoma invasion,” Melanoma Research, vol. 12, no. 6, pp. 539–547, 2002. View at Publisher · View at Google Scholar
  86. I. M. Bachmann, O. Straume, and L. A. Akslen, “Altered expression of cell cycle regulators Cyclin D1, p14, p16, CDK4 and Rb in nodular melanomas,” International Journal of Oncology, vol. 25, no. 6, pp. 1559–1565, 2004. View at Scopus
  87. L. A. Fearfield, J. M. G. Larkin, A. Rowe et al., “Expression of p16, CD95, CD95L and Helix pomatia agglutinin in relapsing and nonrelapsing very thin melanoma,” British Journal of Dermatology, vol. 156, no. 3, pp. 440–447, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. J. M. Karjalainen, M. J. Eskelinen, J. K. Kellokoski, M. Reinikainen, E. M. Alhava, and V.-M. Kosma, “P21WAF1/CIP1 expression in stage I cutaneous malignant melanoma: its relationship with p53, cell proliferation and survival,” British Journal of Cancer, vol. 79, no. 5-6, pp. 895–902, 1999. View at Publisher · View at Google Scholar · View at PubMed
  89. V. A. Florenes, G. M. Maelandsmo, R. S. Kerbel, et al., “Protein expression of the cell-cycle inhibitor p27Kip1 in malignant melanoma: inverse correlation with disease-free survival,” American Journal of Pathology, vol. 153, pp. 305–312, 1998.
  90. D. Ivan, A. H. Diwan, F. J. Esteva, et al., “Expression of cell cycle inhibitor p27Kip1 and its inactivator Jab1 in melanocytic lesions,” Modern Pathology, vol. 17, pp. 811–818, 2004.
  91. M. Korabiowska, H. Betke, S. Kellner, J. Stachura, and A. Schauer, “Differential expression of growth arrest, DNA damage genes and tumour suppressor gene p53 in naevi and malignant melanomas,” Anticancer Research, vol. 17, no. 5, pp. 3697–3700, 1997. View at Scopus
  92. J. M. Radhi, “Malignant melanoma arising from nevi, p53, p16, and Bcl-2: expression in benign versus malignant components,” Journal of Cutaneous Medicine and Surgery, vol. 3, no. 6, pp. 293–297, 1999. View at Scopus
  93. B. A. Webber, D. Lawson, and C. Cohen, “Maspin and mutant p53 expression in malignant melanoma and carcinoma: use of tissue microarray,” Applied Immunohistochemistry and Molecular Morphology, vol. 16, no. 1, pp. 19–23, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. J. A. Chorny, R. J. Barr, A. Kyshtoobayeva, J. Jakowatz, and R. J. Reed, “Ki-67 and p53 expression in minimal deviation melanomas as compared with other nevomelanocytic lesions,” Modern Pathology, vol. 16, no. 6, pp. 525–529, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. B. Loggini, I. Rinaldi, R. Pingitore, R. Cristofani, M. Castagna, and P. Barachini, “Immunohistochemical study of 49 cutaneous melanomas: p53, PCNA, Bcl-2 expression and multidrug resistance,” Tumori, vol. 87, no. 3, pp. 179–186, 2001. View at Scopus
  96. D. Polsky, B. C. Bastian, C. Hazan et al., “HDM2 protein overexpression, but not gene amplification, is related to tumorigenesis of cutaneous melanoma,” Cancer Research, vol. 61, no. 20, pp. 7642–7646, 2001. View at Scopus
  97. D. Polsky, K. Melzer, C. Hazen et al., “HDM2 protein overexpression and prognosis in primary malignant melanoma,” Journal of the National Cancer Institute, vol. 94, no. 23, pp. 1803–1806, 2002. View at Scopus
  98. K. S. Hoek, N. C. Schlegel, P. Brafford et al., “Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature,” Pigment Cell Research, vol. 19, no. 4, pp. 290–302, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. K. S. Hoek, “DNA microarray analyses of melanoma gene expression: a decade in the mines,” Pigment Cell Research, vol. 20, no. 6, pp. 466–484, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. J. A. Curtin, J. Fridlyand, T. Kageshita et al., “Distinct sets of genetic alterations in melanoma,” The New England Journal of Medicine, vol. 353, no. 20, pp. 2135–2147, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. G. Jönsson, C. Dahl, J. Staaf et al., “Genomic profiling of malignant melanoma using tiling-resolution arrayCGH,” Oncogene, vol. 26, no. 32, pp. 4738–4748, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. T. Rothhammer and A. K. Bosserhoff, “Epigenetic events in malignant melanoma,” Pigment Cell Research, vol. 20, no. 2, pp. 92–111, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. M. Stark and N. Hayward, “Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays,” Cancer Research, vol. 67, no. 6, pp. 2632–2642, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. G. L. Johnson and R. Lapadat, “Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases,” Science, vol. 298, no. 5600, pp. 1911–1912, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. H. Ihn, “p38 MAPK inhibitors in dermatology,” Expert Review of Dermatology, vol. 2, no. 4, pp. 403–407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. I. Yajima, M.Y. Kumasaka, N. Thang, et al., “RAS/RAF/MEK/ERK and P13K/PTEN/AKT signalling in malignant melanoma progression and therapy,” Dermatology Research and Practice, vol. 2012, Article ID 354191, 5 pages, 2012. View at Publisher · View at Google Scholar · View at PubMed
  107. P. M. Campbell and C. J. Der, “Oncogenic Ras and its role in tumor cell invasion and metastasis,” Seminars in Cancer Biology, vol. 14, no. 2, pp. 105–114, 2004. View at Publisher · View at Google Scholar · View at PubMed
  108. K. Giehl, “Oncogenic Ras in tumour progression and metastasis,” Biological Chemistry, vol. 386, no. 3, pp. 193–205, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. H. Davies, G. R. Bignell, C. Cox et al., “Mutations of the BRAF gene in human cancer,” Nature, vol. 417, no. 6892, pp. 949–954, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. M. Beeram, A. Patnaik, and E. K. Rowinsky, “Raf: a strategic target for therapeutic development against cancer,” Journal of Clinical Oncology, vol. 23, no. 27, pp. 6771–6790, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. P. Johansson, S. Pavey, and N. Hayward, “Confirmation of a BRAF mutation-associated gene expression signature in melanoma,” Pigment Cell Research, vol. 20, no. 3, pp. 216–221, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. P. M. Pollock and P. S. Meltzer, “A genome-based strategy uncovers frequent BRAF mutations in melanoma,” Cancer Cell, vol. 2, no. 1, pp. 5–7, 2002. View at Publisher · View at Google Scholar
  113. C. J. Marshall, “MAP kinase kinase kinase, MAP kinase kinase and MAP kinase,” Current Opinion in Genetics & Development, vol. 4, pp. 82–89, 1994.
  114. M. J. Garnett and R. Marais, “Guilty as charged: B-RAF is a human oncogene,” Cancer Cell, vol. 6, no. 4, pp. 313–319, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. P. T. Wan, M. J. Garnett, S. M. Roe et al., “Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF,” Cell, vol. 116, no. 6, pp. 855–867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. K. Hookim, M. H. Roh, J. Willman, et al., “Application of immunocytochemistry and BRAF mutational analysis to direct smears of metastatic melanoma,” Cancer Cytopathology. In press.
  117. J. P. Lott, “Vemurafenib in melanoma with BRAF V600E mutation,” The New England Journal of Medicine, vol. 365, no. 15, pp. 1449–1450, 2011.
  118. M. S. Brose, P. Volpe, M. Feldman et al., “BRAF and RAS mutations in human lung cancer and melanoma,” Cancer Research, vol. 62, no. 23, pp. 6997–7000, 2002.
  119. J. Dong, R. G. Phelps, R. Qiao et al., “BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma,” Cancer Research, vol. 63, no. 14, pp. 3883–3885, 2003.
  120. P. M. Pollock, U. L. Harper, K. S. Hansen et al., “High frequency of BRAF mutations in nevi,” Nature Genetics, vol. 33, no. 1, pp. 19–20, 2003. View at Publisher · View at Google Scholar · View at PubMed
  121. W. Liu, J. W. Kelly, M. Trivett, et al., “Distinct clinical and pathological features are associated with BRAF mutation in primary melanoma,” Journal of Investigative Dermatology, vol. 127, no. 4, pp. 900–905, 2007.
  122. U. R. Rapp, M. D. Goldsborough, and G. E. Mark, “Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 14 I, pp. 4218–4222, 1983.
  123. E. E. Patton, H. R. Widlund, J. L. Kutok et al., “BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma,” Current Biology, vol. 15, no. 3, pp. 249–254, 2005. View at Publisher · View at Google Scholar · View at PubMed
  124. E. E. Patton, H. R. Widlund, J. L. Kutok et al., “BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma,” Current Biology, vol. 15, no. 3, pp. 249–254, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. D. Dankort, D. P. Curley, R. A. Cartidge, et al., “BRAF (V600E) cooperates with PTEN loss to induce metastatic melanoma,” Nature Genetics, vol. 41, no. 5, pp. 544–552, 2009.
  126. Y. Chudnovsky, A. E. Adams, P. B. Robbins, Q. Lin, and P. A. Khavari, “Use of human tissue to assess the oncogenic activity of melanoma-associated mutations,” Nature Genetics, vol. 37, no. 7, pp. 745–749, 2005. View at Publisher · View at Google Scholar · View at PubMed
  127. J. A. Curtin, J. Fridlyand, T. Kageshita et al., “Distinct sets of genetic alterations in melanoma,” The New England Journal of Medicine, vol. 353, no. 20, pp. 2135–2147, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  128. A. Brozyna, B. Zbytek, J. Granese, J. A. Carlson, J. Ross, and A. Slominski, “Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma,” Expert Review of Dermatology, vol. 2, no. 4, pp. 451–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Bevona, W. Goggins, T. Quinn, J. Fullerton, H. Tsao, and R. Corona, “Cutaneous melanomas associated with nevi,” Archives of Dermatology, vol. 139, no. 12, pp. 1620–1624, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  130. A. S. Yazdi, G. Palmedo, M. J. Flaig et al., “Mutations of the BRAF gene in benign and malignant melanocytic lesions,” Journal of Investigative Dermatology, vol. 121, no. 5, pp. 1160–1162, 2003. View at Publisher · View at Google Scholar · View at PubMed
  131. B. Devitt, W. Liu, R. Salemi et al., “Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma,” Pigment Cell and Melanoma Research, vol. 24, no. 4, pp. 666–672, 2011. View at Publisher · View at Google Scholar · View at PubMed
  132. J. L. Maldonado, J. Fridlyand, H. Patel et al., “Determinants of BRAF mutations in primary melanomas,” Journal of the National Cancer Institute, vol. 95, no. 24, pp. 1878–1890, 2003.
  133. R. Houben, J. C. Becker, A. Kappel et al., “Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis,” Journal of Carcinogenesis, vol. 3, article 6, 2004. View at Publisher · View at Google Scholar · View at PubMed
  134. J. Lang and R. M. MacKie, “Prevalence of exon 15 BRAF mutations in primary melanoma of the superficial spreading, nodular, acral, and lentigo maligna subtypes,” Journal of Investigative Dermatology, vol. 125, no. 3, pp. 575–579, 2005. View at Publisher · View at Google Scholar · View at PubMed
  135. Y. Cohen, E. Rosenbaum, S. Begum, et al., “Exon 15 BRAF mutations are uncommon in melanomas arising in non sun-exposed sites,” Clinical Cancer Research, vol. 10, no. 10, pp. 3444–3447, 2004.
  136. M. T. Landi, J. Bauer, R. M. Pfeiffer et al., “MC1R germline variants confer risk for BRAF-mutant melanoma,” Science, vol. 313, no. 5786, pp. 521–522, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  137. L. Pho, D. Grossman, and S. A. Leachman, “Melanoma genetics: a review of genetic factors and clinical phenotypes in familial melanoma,” Current Opinion in Oncology, vol. 18, no. 2, pp. 173–179, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. N. Lin, K. Urabe, Y. Moroi et al., “Overexpression of phosphorylated-STAT3 and phosphorylated-ERK protein in dermatofibrosarcoma protuberans,” European Journal of Dermatology, vol. 16, no. 3, pp. 262–265, 2006. View at Scopus
  139. F. J. Esteva, A. A. Sahin, T. L. Smith et al., “Prognostic significance of phosphorylated P38 mitogen-activated protein kinase and HER-2 expression in lymph node-positive breast carcinoma,” Cancer, vol. 100, no. 3, pp. 499–506, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. E. Sprecher, R. Bergman, A. Meilick et al., “Apoptosis, Fas and Fas-ligand expression in melanocytic tumors,” Journal of Cutaneous Pathology, vol. 26, no. 2, pp. 72–77, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Hussein, A Haemel, and G. S. Wood, “Apoptosis and melanoma: molecular mechanisms,” Journal of Pathology, vol. 199, no. 3, pp. 275–288, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. N. V. Fernandes, P. K. Guntipalli, and M. O. Huanbiao, “D-δ-tocotrienol-mediated cell cycle arrest and apoptosis in human melanoma cells,” Anticancer Research, vol. 30, no. 12, pp. 4937–4944, 2010. View at Scopus
  143. S. Medic, H. Rizos, and M. Ziman, “Differential PAX3 functions in normal skin melanocytes and melanoma cells,” Biochemical and Biophysical Research Communications, vol. 411, no. 4, pp. 832–837, 2011. View at Publisher · View at Google Scholar · View at PubMed
  144. J. Downward, “PI 3-kinase, AKT and cell survival,” Seminars in Cell and Developmental Biology, vol. 15, no. 2, pp. 177–182, 2004.
  145. J. M. Stahl, M. Cheung, A. Sharma, N. R. Trivedi, S. Shanmugam, and G. P. Robertson, “Loss of PTEN promotes tumor development in malignant melanoma,” Cancer Research, vol. 63, no. 11, pp. 2881–2890, 2003. View at Scopus
  146. C. A. Torres-Cabala, W. L. Wang, J. Trent et al., “Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type,” Modern Pathology, vol. 22, no. 11, pp. 1446–1456, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. D. Handolias, R. Salemi, W. Murray et al., “Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure,” Pigment Cell and Melanoma Research, vol. 23, no. 2, pp. 210–215, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. L. Cerroni, H. P. Soyer, and H. Kerl, “bcl-2 protein expression in cutaneous malignant melanoma and benign melanocytic nevi,” American Journal of Dermatopathology, vol. 17, no. 1, pp. 7–11, 1995. View at Scopus
  149. H. Helmbach, P. Sinha, and D. Schadendorf, “Human melanoma: drug resistance,” Cancer Research, vol. 161, pp. 93–110, 2003. View at Scopus