About this Journal Submit a Manuscript Table of Contents
ISRN Dermatology
Volume 2013 (2013), Article ID 812029, 25 pages
http://dx.doi.org/10.1155/2013/812029
Review Article

Clinical Presentation, Pathogenesis, Diagnosis, and Treatment of Epidermolysis Bullosa Acquisita

Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Received 8 May 2013; Accepted 2 June 2013

Academic Editors: C. K. Janniger, F. Kaneko, E. Nagore, and E. Pasmatzi

Copyright © 2013 Ralf J. Ludwig. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. T. Elliott, “Two cases of epidermolysis bullosa,” Journal of Cutaneous and Genito-Urinary Diseases, vol. 13, article 10, 1895.
  2. H. H. Roenigk Jr., J. G. Ryan, and W. F. Bergfeld, “Epidermolysis bullosa acquisita. Report of three cases and review of all published cases,” Archives of Dermatology, vol. 103, no. 1, pp. 1–10, 1971. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Ishii, T. Hamada, T. Dainichi et al., “Epidermolysis bullosa acquisita: what's new?” Journal of Dermatology, vol. 37, no. 3, pp. 220–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Gupta, D. T. Woodley, and M. Chen, “Epidermolysis bullosa acquisita,” Clinics in Dermatology, vol. 30, no. 1, pp. 60–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Schmidt and D. Zillikens, “Pemphigoid diseases,” The Lancet, vol. 381, pp. 320–332, 2013. View at Publisher · View at Google Scholar
  6. J. J. A. Buijsrogge, G. F. H. Diercks, H. H. Pas, and M. F. Jonkman, “The many faces of epidermolysis bullosa acquisita after serration pattern analysis by direct immunofluorescence microscopy,” British Journal of Dermatology, vol. 165, no. 1, pp. 92–98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Kim, Y. H. Kim, and S.-C. Kim, “Epidermolysis bullosa acquisita: a retrospective clinical analysis of 30 cases,” Acta Dermato-Venereologica, vol. 91, no. 3, pp. 307–312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Zumelzu, C. Le Roux-Villet, P. Loiseau et al., “Black patients of african descent and HLA-DRB115:03 frequency overrepresented in epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 131, no. 12, pp. 2386–2393, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Lam and R. A. Vleugels, “Images in clinical medicine. Epidermolysis bullosa acquisita,” The New England Journal of Medicine, vol. 368, article e17, 2013.
  10. T. T. Kuo, K. Baker, M. Yoshida et al., “Neonatal Fc receptor: from immunity to therapeutics,” Journal of Clinical Immunology, vol. 30, no. 6, pp. 777–789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. L. Abrams, A. Smidt, L. Benjamin, M. Chen, D. Woodley, and A. J. Mancini, “Congenital epidermolysis bullosa acquisita: vertical transfer of maternal autoantibody from mother to infant,” Archives of Dermatology, vol. 147, no. 3, pp. 337–341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Chen, G. H. Kim, L. Prakash, and D. T. Woodley, “Epidermolysis bullosa acquisita: autoimmunity to anchoring fibril collagen,” Autoimmunity, vol. 45, no. 1, pp. 91–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. P. G. Lang Jr. and M. J. Tapert, “Severe ocular involvement in a patient with epidermolysis bullosa acquisita,” Journal of the American Academy of Dermatology, vol. 16, no. 2, pp. 439–443, 1987. View at Scopus
  14. M. Zierhut, H.-J. Thiel, E. G. Weidle, K.-P. Steuhl, K. Sonnichsen, and G. Schaumburg-Lever, “Ocular involvement in epidermolysis bullosa acquisita,” Archives of Ophthalmology, vol. 107, no. 3, pp. 398–401, 1989. View at Scopus
  15. F. Caux, G. Kirtschig, F. Lemarchand-Venencie et al., “IgA-epidermolysis bullosa acquisita in a child resulting in blindness,” British Journal of Dermatology, vol. 137, no. 2, pp. 270–275, 1997. View at Scopus
  16. A. Camara, P.-A. Bécherel, A. Bussel et al., “Resistant epidermolysis bullous acquisita with severe ocular involvement: successful extracorporeal photochemotherapy,” Annales de Dermatologie et de Venereologie, vol. 126, no. 8-9, pp. 612–615, 1999. View at Scopus
  17. J. W. Bauer, H. Schaeppi, D. Metze et al., “Ocular involvement in IgA-epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 141, no. 5, pp. 887–892, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Vodegel, M. C. J. M. de Jong, H. H. Pas, and M. F. Jonkman, “IgA-mediated epidermolysis bullosa acquisita: two cases and review of the literature,” Journal of the American Academy of Dermatology, vol. 47, no. 6, pp. 919–925, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Kurzhals, W. Stolz, M. Meurer, J. Kunze, O. Braun-Falco, and T. Krieg, “Acquired epidermolysis bullosa with the clinical feature of Brunsting-Perry cicatricial bullous pemphigoid,” Archives of Dermatology, vol. 127, no. 3, pp. 391–395, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Wieme, J. Lambert, M. Moerman, M. L. Geerts, L. Temmerman, and J. M. Naeyaert, “Epidermolysis bullosa acquisita with combined features of bullous pemphigoid and cicatricial pemphigoid,” Dermatology, vol. 198, no. 3, pp. 310–313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Taniuchi, M. Inaoki, Y. Nishimura, T. Mori, and K. Takehara, “Nonscarring inflammatory epidermolysis bullosa acquisita with esophageal involvement and linear IgG deposits,” Journal of the American Academy of Dermatology, vol. 36, no. 2, pp. 320–322, 1997. View at Scopus
  22. K. E. Harman, L. R. Whittam, S. H. Wakelin, and M. M. Black, “Severe, refractory epidermolysis bullosa acquisita complicated by an oesophageal stricture responding to intravenous immune globulin,” British Journal of Dermatology, vol. 139, no. 6, pp. 1126–1127, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. A. R. Shipman, A. L. Agero, I. Cook et al., “Epidermolysis bullosa acquisita requiring multiple oesophageal dilatations,” Clinical and Experimental Dermatology, vol. 33, no. 6, pp. 787–789, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. E. Hester, D. P. Arnstein, and D. Woodley, “Laryngeal manifestations of epidermolysis bullosa acquisita,” Archives of Otolaryngology—Head and Neck Surgery, vol. 121, no. 9, pp. 1042–1044, 1995. View at Scopus
  25. M. C. Luke, T. N. Darling, R. Hsu et al., “Mucosal morbidity in patients with epidermolysis bullosa acquisita,” Archives of Dermatology, vol. 135, no. 8, pp. 954–959, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. A. S. Paller, L. L. Queen, and D. T. Woodley, “Organ-specific, phylogenetic, and ontogenetic distribution of the epidermolysis bullosa acquisita antigen,” Journal of Investigative Dermatology, vol. 86, no. 4, pp. 376–379, 1986. View at Scopus
  27. R. Visser, J. W. Arends, I. M. Leigh, and F. T. Bosman, “Paterns and composition of basement membranes in colon adenomas and adenocarcinomas,” Journal of Pathology, vol. 170, no. 3, pp. 285–290, 1993. View at Scopus
  28. N. Ishii, A. Recke, S. Mihai et al., “Autoantibody-induced intestinal inflammation and weight loss in experimental epidermolysis bullosa acquisita,” Journal of Pathology, vol. 224, no. 2, pp. 234–244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Furue, M. Iwata, K. Tamaki, and Y. Ishibashi, “Anatomical distribution and immunological characteristics of epidermolysis bullosa acquisita antigen and bullous pemphigoid antigen,” British Journal of Dermatology, vol. 114, no. 6, pp. 651–659, 1986. View at Scopus
  30. C. W. Lee, “Prevalences of subacute cutaneous lupus erythematosus and epidermolysis bullosa acquisita among Korean/Oriental populations,” Dermatology, vol. 197, no. 2, article 187, 1998. View at Scopus
  31. Y. Endo, A. Tamura, O. Ishikawa, Y. Miyachi, and T. Hashimoto, “Psoriasis vulgaris coexistent with epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 137, no. 5, pp. 783–786, 1997. View at Scopus
  32. S. D. Morris, R. Mallipeddi, N. Oyama et al., “Psoriasis bullosa acquisita,” Clinical and Experimental Dermatology, vol. 27, no. 8, pp. 665–669, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Hoshina, D. Sawamura, T. Nomura et al., “Epidermolysis bullosa acquisita associated with psoriasis vulgaris,” Clinical and Experimental Dermatology, vol. 32, no. 5, pp. 516–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Kabashima, R. Hino, T. Bito et al., “Epidermolysis bullosa acquisita associated with psoriasis,” Acta Dermato-Venereologica, vol. 90, no. 3, pp. 314–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Sherry-Dottridge, “Case for diagnosis: acquired epidermatolysis bullosa?” Proceedings of the Royal Society of Medicine, vol. 55, article 409, 1962. View at Scopus
  36. B. Labeille, J.-L. Gineston, J.-P. Denoeux, and J.-P. Capron, “Epidermolysis bullosa acquisita and Crohn's disease. A case report with immunological and electron microscopic studies,” Archives of Internal Medicine, vol. 148, no. 6, pp. 1457–1459, 1988. View at Scopus
  37. B. Raab, D. F. Fretzin, and D. M. Bronson, “Epidermolysis bullosa acquisita and inflammatory bowel disease,” Journal of the American Medical Association, vol. 250, no. 13, pp. 1746–1748, 1983. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Schattenkirchner, M. Lémann, C. Prost et al., “Localized epidermolysis bullosa acquisita of the esophagus in a patient with Crohn's disease,” American Journal of Gastroenterology, vol. 91, no. 8, pp. 1657–1659, 1996. View at Scopus
  39. J. K. Livden, R. Nilsen, S. Thunold, and H. Schjonsby, “Epidermolysis bullosa acquisita and Crohn's disease,” Acta Dermato-Venereologica, vol. 58, no. 3, pp. 241–244, 1978. View at Scopus
  40. B. R. Hughes and J. Horne, “Epidermolysis bullosa acquisita and total ulcerative colitis,” Journal of the Royal Society of Medicine, vol. 81, no. 8, pp. 473–475, 1988. View at Scopus
  41. M. Chen, E. A. O'Toole, J. Sanghavi et al., “The epidermolysis bullosa acquisita antigen (type VII collagen) is present in human colon and patients with Crohn's disease have autoantibodies to type VII collagen,” Journal of Investigative Dermatology, vol. 118, no. 6, pp. 1059–1064, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. G. J. Oostingh, C. Sitaru, D. Zillikens, A. Kromminga, and H. Lührs, “Subclass distribution of type VII collagen-specific autoantibodies in patients with inflammatory bowel disease,” Journal of Dermatological Science, vol. 37, no. 3, pp. 182–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Licarete, S. Ganz, M. Recknagel et al., “Prevalence of collagen VII-specific autoantibodies in patients with autoimmune and inflammatory diseases,” BMC Immunology, vol. 13, article 16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Sitaru, S. Mihai, C. Otto et al., “Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen,” Journal of Clinical Investigation, vol. 115, no. 4, pp. 870–878, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Sitaru, M. T. Chiriac, S. Mihai et al., “Induction of complement-fixing autoantibodies against type VII collagen results in subepidermal blistering in mice,” Journal of Immunology, vol. 177, no. 5, pp. 3461–3468, 2006. View at Scopus
  46. M. Kasperkiewicz, M. Hirose, A. Recke, E. Schmidt, D. Zillikens, and R. J. Ludwig, “Clearance rates of circulating and tissue-bound autoantibodies to type VII collagen in experimental epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 162, no. 5, pp. 1064–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Bernard, L. Vaillant, B. Labeille et al., “Incidence and distribution of subepidermal autoimmune bullous skin diseases in three French regions. Bullous Diseases French Study Group,” Archives of Dermatology, vol. 131, no. 1, pp. 48–52, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. S. N. Wong and S. H. Chua, “Spectrum of subepidermal immunobullous disorders seen at the National Skin Centre, Singapore: a 2-year review,” British Journal of Dermatology, vol. 147, no. 3, pp. 476–480, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Bertram, E.-B. Bröcker, D. Zillikens, and E. Schmidt, “Prospective analysis of the incidence of autoimmune bullous disorders in Lower Franconia, Germany,” Journal of the German Society of Dermatology, vol. 7, no. 5, pp. 434–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Yang, C. Wang, N. Wang et al., “Childhood epidermolysis bullosa acquisita: report of a Chinese case,” Pediatric Dermatology, vol. 29, pp. 614–617, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Bordier-Lamy, C. Eschard, M. Coste et al., “Epidermolysis bullosa acquisita of childhood,” Annales de Dermatologie et de Venereologie, vol. 136, no. 6-7, pp. 513–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. R. Stanley and M. Amagai, “Pemphigus, bullous impetigo, and the staphylococcal scalded-skin syndrome,” New England Journal of Medicine, vol. 355, no. 17, pp. 1800–1810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. D. T. Woodley, R. E. Burgeson, G. Lunstrum, L. Bruckner-Tuderman, M. J. Reese, and R. A. Briggaman, “Epidermolysis bullosa acquisita antigen is the globular carboxyl terminus of type VII procollagen,” Journal of Clinical Investigation, vol. 81, no. 3, pp. 683–687, 1988. View at Scopus
  54. D. T. Woodley, R. A. Briggaman, and E. J. O'Keefe, “Identification of the skin basement-membrane autoantigen in epidermolysis bullosa acquisita,” New England Journal of Medicine, vol. 310, no. 16, pp. 1007–1013, 1984. View at Scopus
  55. J.-C. Lapiere, D. T. Woodley, M. G. Parente et al., “Epitope mapping of type VII collagen. Identification of discrete peptide sequences recognized by sera from patients with acquired epidermolysis bullosa,” Journal of Clinical Investigation, vol. 92, no. 4, pp. 1831–1839, 1993. View at Scopus
  56. W. R. Gammon, D. F. Murrell, M. W. Jenison et al., “Autoantibodies to type VII collagen recognize epitopes in a fibronectin-like region of the noncollagenous (NC1) domain,” Journal of Investigative Dermatology, vol. 100, no. 5, pp. 618–622, 1993. View at Scopus
  57. M. Chen, A. Doostan, P. Bandyopadhyay et al., “The cartilage matrix protein subdomain of type VII collagen is pathogenic for epidermolysis bullosa acquisita,” American Journal of Pathology, vol. 170, no. 6, pp. 2009–2018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Ishii, M. Yoshida, A. Ishida-Yamamoto et al., “Some epidermolysis bullosa acquisita sera react with epitopes within the triple-helical collagenous domain as indicated by immunoelectron microscopy,” British Journal of Dermatology, vol. 160, no. 5, pp. 1090–1093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Ishii, M. Yoshida, Y. Hisamatsu et al., “Epidermolysis bullosa acquisita sera react with distinct epitopes on the NC1 and NC2 domains of type VII collagen: study using immunoblotting of domain-specific recombinant proteins and postembedding immunoelectron microscopy,” British Journal of Dermatology, vol. 150, no. 5, pp. 843–851, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Sitaru, A. Kromminga, T. Hashimoto, E. B. Bröcker, and D. Zillikens, “Autoantibodies to type VII collagen mediate Fcγ-dependent neutrophil activation and induce dermal-epidermal separation in cryosections of human skin,” American Journal of Pathology, vol. 161, no. 1, pp. 301–311, 2002. View at Scopus
  61. S. Kulkarni, C. Sitaru, Z. Jakus et al., “PI3Kβ plays a critical role in neutrophil activation by immune complexes,” Science Signaling, vol. 4, no. 168, article ra23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Recke, C. Sitaru, G. Vidarsson et al., “Pathogenicity of IgG subclass autoantibodies to type VII collagen: induction of dermal-epidermal separation,” Journal of Autoimmunity, vol. 34, no. 4, pp. 435–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. D. T. Woodley, C. Chang, P. Saadat, R. Ram, Z. Liu, and M. Chen, “Evidence that anti-type VII collagen antibodies are pathogenic and responsible for the clinical, histological, and immunological features of epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 124, no. 5, pp. 958–964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. D. T. Woodley, R. Ram, A. Doostan et al., “Induction of epidermolysis bullosa acquisita in mice by passive transfer of autoantibodies from patients,” Journal of Investigative Dermatology, vol. 126, no. 6, pp. 1323–1330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Wang, R. Gupta, A. Garlapati, J. Cogan, D. Woodley, and M. Chen, “Type IV collagen binding-site within type VII collagen is a pathogenic epitope for EBA autoantibodies,” Journal of Investigative Dermatology, vol. 131, p. S7, 2011.
  66. H. Iwata, S. Leinweber, U. Samavedam et al., “Antibodies to the von Willebrand Factor A domain of type VII collagen induce strain-dependent subepidermal blistering in mice,” Experimental Dermatology, vol. 21, article e31, 2012.
  67. A. Vorobyev, A. Recke, J. J. Buijsrogge et al., “Human type VII collagen harbors multiple pathogenically relevant epitopes,” Journal of Investigative Dermatology, vol. 131, p. S19, 2011.
  68. R. J. Ludwig, A. Recke, K. Bieber et al., “Generation of antibodies of distinct subclasses and specificity is linked to H2s in an active mouse model of epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 131, no. 1, pp. 167–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. C. M. Hammers, K. Bieber, K. Kalies et al., “Complement-fixing anti-type VII collagen antibodies are induced in Th1-polarized lymph nodes of epidermolysis bullosa acquisita-susceptible mice,” Journal of Immunology, vol. 187, no. 10, pp. 5043–5050, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Leineweber, S. Schönig, and K. Seeger, “Insight into interactions of the von-Willebrand-factor-A-like domain 2 with the FNIII-like domain 9 of collagen VII by NMR and SPR,” FEBS Letters, vol. 585, no. 12, pp. 1748–1752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. M. G. Parente, L. C. Chung, J. Ryynanen et al., “Human type VII collagen: cDNA cloning and chromosomal mapping of the gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 16, pp. 6931–6935, 1991. View at Scopus
  72. H. Wegener, S. Leineweber, and K. Seeger, “The vWFA2 domain of type VII collagen is responsible for collagen binding,” Biochemical and Biophysical Research Communications, vol. 430, pp. 449–453, 2013. View at Publisher · View at Google Scholar
  73. X. Yu, K. Holdorf, B. Kasper, D. Zillikens, R. J. Ludwig, and F. Petersen, “FcγRIIA and FcγRIIIB are required for autoantibody-induced tissue damage in experimental human models of bullous pemphigoid,” Journal of Investigative Dermatology, vol. 130, no. 12, pp. 2841–2844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. W. R. Gammon, C. C. Merritt, and D. M. Lewis, “An in vitro model of immune complex-mediated basement membrane zone separation caused by pemphigoid antibodies, leukocytes, and complement,” Journal of Investigative Dermatology, vol. 78, no. 4, pp. 285–290, 1982. View at Scopus
  75. C. Sitaru, E. Schmidt, S. Petermann, L. S. Munteanu, E.-B. Bröcker, and D. Zillikens, “Autoantibodies to bullous pemphigoid antigen 180 induce dermal-epidermal separation in cryosections of human skin,” Journal of Investigative Dermatology, vol. 118, no. 4, pp. 664–671, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Umemoto, M. Akiyama, T. Domon et al., “Type VII collagen deficiency causes defective tooth enamel formation due to poor differentiation of ameloblasts,” The American Journal of Pathology, vol. 181, pp. 1659–1671, 2012. View at Publisher · View at Google Scholar
  77. R. J. Ludwig, S. Müller, A. D. C. Marques et al., “Identification of quantitative trait loci in experimental epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 132, no. 5, pp. 1409–1415, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Bieber, S. Sun, N. Ishii et al., “Animal models for autoimmune bullous dermatoses,” Experimental Dermatology, vol. 19, no. 1, pp. 2–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. R. J. Ludwig, “Model systems duplicating epidermolysis bullosa acquisita: a methodological review,” Autoimmunity, vol. 45, no. 1, pp. 102–110, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. W. R. Gammon, E. R. Heise, W. A. Burke, J.-D. Fine, D. T. Woodley, and R. A. Briggaman, “Increased frequency of HLA-DR2 in patients with autoantibodies to epidermolysis bullosa acquisita antigen: evidence that the expression of autoimmunity to type VII collagen is HLA class II allele associated,” Journal of Investigative Dermatology, vol. 91, no. 3, pp. 228–232, 1988. View at Scopus
  81. M. H. Noe, M. Chen, D. T. Woodley, and J. A. Fairley, “Familial epidermolysis bullosa acquisita,” Dermatology Online Journal, vol. 14, no. 12, article 2, 2008. View at Scopus
  82. F. Asghari, B. Fitzner, S.-A. Holzhüter et al., “Identification of quantitative trait loci for murine autoimmune pancreatitis,” Journal of Medical Genetics, vol. 48, no. 8, pp. 557–562, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. A. G. Sitaru, A. Sesarman, S. Mihai et al., “T cells are required for the production of blister-inducing autoantibodies in experimental epidermolysis bullosa acquisita,” Journal of Immunology, vol. 184, no. 3, pp. 1596–1603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Kasperkiewicz, R. Müller, R. Manz et al., “Heat-shock protein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets,” Blood, vol. 117, no. 23, pp. 6135–6142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Amagai, K. Tsunoda, H. Suzuki, K. Nishifuji, S. Koyasu, and T. Nishikawa, “Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus,” Journal of Clinical Investigation, vol. 105, no. 5, pp. 625–631, 2000. View at Scopus
  86. K. Tsunoda, T. Ota, H. Suzuki et al., “Pathogenic autoantibody production requires loss of tolerance against desmoglein 3 in both T and B cells in experimental pemphigus vulgaris,” European Journal of Immunology, vol. 32, pp. 627–633, 2002. View at Publisher · View at Google Scholar
  87. H. Ujiie, A. Shibaki, W. Nishie et al., “Noncollagenous 16A domain of type XVII collagen-reactive CD4+ T cells play a pivotal role in the development of active disease in experimental bullous pemphigoid model,” Clinical Immunology, vol. 142, no. 2, pp. 167–175, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Ujiie, A. Shibaki, W. Nishie et al., “A novel active mouse model for bullous pemphigoid targeting humanized pathogenic antigen,” Journal of Immunology, vol. 184, no. 4, pp. 2166–2174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Ujiie and H. Shimizu, “Evidence for pathogenicity of autoreactive T cells in autoimmune bullous diseases shown by animal disease models,” Experimental Dermatology, vol. 21, pp. 901–905, 2012. View at Publisher · View at Google Scholar
  90. A. Giménez Ortiz and J. Montalar Salcedo, “Heat shock proteins as targets in oncology,” Clinical and Translational Oncology, vol. 12, no. 3, pp. 166–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Colliou, D. Picard, F. Caillot et al., “Long-term remissions of severe pemphigus after rituximab therapy are associated with prolonged failure of desmoglein B cell response,” Science Translational Medicine, vol. 5, article 175ra30, 2013.
  92. R. Müller, C. Dahler, C. Möbs et al., “T and B cells target identical regions of the non-collagenous domain 1 of type VII collagen in epidermolysis bullosa acquisita,” Clinical Immunology, vol. 135, no. 1, pp. 99–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. N. Li, M. Zhao, J. Hilario-Vargas et al., “Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3440–3450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Sesarman, A. G. Sitaru, F. Olaru, D. Zillikens, and C. Sitaru, “Neonatal Fc receptor deficiency protects from tissue injury in experimental epidermolysis bullosa acquisita,” Journal of Molecular Medicine, vol. 86, no. 8, pp. 951–959, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Ji, D. Gauguier, K. Ohmura et al., “Genetic influences on the end-stage effector phase of arthritis,” Journal of Experimental Medicine, vol. 194, no. 3, pp. 321–330, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Textor, A. Peixoto, S. E. Henrickson, M. Sinn, U. H. von Andrian, and J. Westermann, “Defining the quantitative limits of intravital two-photon lymphocyte tracking,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 30, pp. 12401–12406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Lohi, I. Leivo, T. Tani et al., “Laminins, tenascin and type VII collagen in colorectal mucosa,” Histochemical Journal, vol. 28, no. 6, pp. 431–440, 1996. View at Scopus
  98. I. Leivo, T. Tani, L. Laitinen et al., “Anchoring complex components laminin-5 and type VII collagen in intestine: association with migrating and differentiating enterocytes,” Journal of Histochemistry and Cytochemistry, vol. 44, no. 11, pp. 1267–1277, 1996. View at Scopus
  99. R. H. W. Wetzels, H. C. M. Robben, I. M. Leigh, H. E. Schaafsma, G. P. Vooijs, and F. C. S. Ramaekers, “Distribution patterns of type VII collagen in normal and malignant human tissues,” American Journal of Pathology, vol. 139, no. 2, pp. 451–459, 1991. View at Scopus
  100. H. Iwata, N. Kamio, Y. Aoyama et al., “IgG from patients with bullous pemphigoid depletes cultured keratinocytes of the 180-kDa bullous pemphigoid antigen (type XVII collagen) and weakens cell attachment,” Journal of Investigative Dermatology, vol. 129, no. 4, pp. 919–926, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. K. Natsuga, W. Nishie, S. Shinkuma et al., “Antibodies to pathogenic epitopes on type XVII collagen cause skin Ffragility in a complement-dependent and -independent manner,” The Journal of Immunology, vol. 188, no. 11, pp. 5792–5799, 2012.
  102. H. Iwata and Y. Kitajima, “Bullous pemphigoid: role of complement and mechanisms for blister formation within the lamina lucida,” Experimental Dermatology, vol. 22, 6, pp. 381–385, 2013. View at Publisher · View at Google Scholar
  103. D. Villone, A. Fritsch, M. Koch, L. Bruckner-Tuderman, U. Hansen, and P. Bruckner, “Supramolecular interactions in the dermo-epidermal junction zone: anchoring fibril-collagen VII tightly binds to banded collagen fibrils,” Journal of Biological Chemistry, vol. 283, no. 36, pp. 24506–24513, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Sesarman, S. Mihai, M. T. Chiriac et al., “Binding of avian IgY to type VII collagen does not activate complement and leucocytes and fails to induce subepidermal blistering in mice,” British Journal of Dermatology, vol. 158, no. 3, pp. 463–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. G. Lauc, J. E. Huffman, M. Pucic et al., “Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers,” PLOS Genetics, vol. 9, Article ID e1003225, 2013.
  106. A. Ercan, M. G. Barnes, M. Hazen et al., “Multiple juvenile idiopathic arthritis subtypes demonstrate proinflammatory IgG glycosylation,” Arthritis & Rheumatism, vol. 64, pp. 3025–3033, 2012. View at Publisher · View at Google Scholar
  107. M. Collin and A. Olsén, “EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG,” The EMBO Journal, vol. 20, no. 12, pp. 3046–3055, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. K. S. Nandakumar, M. Collin, A. Olsén et al., “Endoglycosidase treatment abrogates IgG arthritogenicity: importance of IgG glycosylation in arthritis,” European Journal of Immunology, vol. 37, no. 10, pp. 2973–2982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Albert, M. Collin, D. Dudziak, J. V. Ravetch, and F. Nimmerjahn, “In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 15005–15009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. M. M. van Timmeren, B. S. van der Veen, C. A. Stegeman et al., “IgG glycan hydrolysis attenuates ANCA-mediated glomerulonephritis,” Journal of the American Society of Nephrology, vol. 21, no. 7, pp. 1103–1114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. R. Yang, M. A. Otten, T. Hellmark et al., “Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes,” Nephrology Dialysis Transplantation, vol. 25, no. 8, pp. 2479–2486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Allhorn, J. G. Briceño, L. Baudino et al., “The IgG-specific endoglycosidase EndoS inhibits both cellular and complement-mediated autoimmune hemolysis,” Blood, vol. 115, no. 24, pp. 5080–5088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Hirose, K. Vafia, K. Kalies et al., “Enzymatic autoantibody glycan hydrolysis alleviates autoimmunity against type VII collagen,” Journal of Autoimmunity, vol. 39, no. 4, pp. 304–314, 2012. View at Publisher · View at Google Scholar
  114. M. Benkhoucha, N. Molnarfi, M. L. Santiago-Raber et al., “IgG glycan hydrolysis by EndoS inhibits experimental autoimmune encephalomyelitis,” J Neuroinflammation, vol. 9, article 209, 2012.
  115. R. J. Ludwig and E. Schmidt, “Cytokines in autoimmune bullous skin diseases. Epiphenomena or contribution to pathogenesis?” Giornale Italiano di Dermatologia e Venereologia, vol. 144, no. 4, pp. 339–349, 2009. View at Scopus
  116. J. B. Kuemmerle-Deschner, P. N. Tyrrell, I. Koetter et al., “Efficacy and safety of anakinra therapy in pediatric and adult patients with the autoinflammatory Muckle-Wells syndrome,” Arthritis & Rheumatism, vol. 63, no. 3, pp. 840–849, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. D. J. Lovell, N. Ruperto, S. Goodman et al., “Adalimumab with or without methotrexate in juvenile rheumatoid arthritis,” New England Journal of Medicine, vol. 359, no. 8, pp. 810–820, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. M. J. Elliott, R. N. Maini, M. Feldmann et al., “Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis,” The Lancet, vol. 344, no. 8930, pp. 1105–1110, 1994. View at Publisher · View at Google Scholar · View at Scopus
  119. P. J. Mease, B. S. Goffe, J. Metz, A. Vanderstoep, B. Finck, and D. J. Bürge, “Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial,” The Lancet, vol. 356, no. 9227, pp. 385–390, 2000. View at Scopus
  120. W. J. Sandborn, P. Rutgeerts, R. Enns et al., “Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial,” Annals of Internal Medicine, vol. 146, no. 12, pp. 829–838, 2007. View at Scopus
  121. H. John, A. Whallett, and M. Quinlan, “Successful biologic treatment of ocular mucous membrane pemphigoid with anti-TNF-α,” Eye, vol. 21, no. 11, pp. 1434–1435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. J. S. Kennedy, R. L. Devillez, and J. S. Henning, “Recalcitrant cicatricial pemphigoid treated with the anti-TNF-alpha agent etanercept,” Journal of Drugs in Dermatology, vol. 9, no. 1, pp. 68–70, 2010. View at Scopus
  123. U. K. Samavedam, J. Scheller, Y. Gupta et al., “Recombinant IL-6 treatment protects mice from organ specific autoimmune disease by IL-6 classical signalling-dependent IL-1ra induction,” Journal of Autoimmunity, vol. 40, pp. 74–85, 2013. View at Publisher · View at Google Scholar
  124. M. Kasperkiewicz, F. Nimmerjahn, S. Wende et al., “Genetic identification and functional validation of FcγRIV as key molecule in autoantibody-induced tissue injury,” Journal of Pathology, vol. 228, no. 1, pp. 8–19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. R. J. Ludwig and D. Zillikens, “Pathogenesis of epidermolysis bullosa acquisita,” Dermatologic Clinics, vol. 29, no. 3, pp. 493–501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. M. T. Chiriac, J. Roesler, A. Sindrilaru, K. Scharffetter-Kochanek, D. Zillikens, and C. Sitaru, “NADPH oxidase is required for neutrophil-dependent autoantibody-induced tissue damage,” Journal of Pathology, vol. 212, no. 1, pp. 56–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Hirose, L. Brandolini, D. Zimmer et al., “The allosteric CXCR1/2 inhibitor DF2156A improves experimental epidermolysis bullosa acquisita,” Journal of Genetic Syndromes & Gene Therapy, 2013. View at Publisher · View at Google Scholar
  128. U. Samavedam, S. Mueller, A. Recke, E. Schmidt, D. Zillikens, and R. J. Ludwig, “A crucial role of granulocyte-macrophage colony-stimulating factor in the pathogenesis of experimental epidermolysis bullosa acquisita,” Experimental Dermatology, vol. 21, article e11, 2012.
  129. S. Mihai, M. T. Chiriac, K. Takahashi et al., “The alternative pathway of complement activation is critical for blister induction in experimental epidermolysis bullosa acquisita,” Journal of Immunology, vol. 178, no. 10, pp. 6514–6521, 2007. View at Scopus
  130. C. M. Karsten, M. K. Pandey, J. Figge et al., “Galactosylated IgG1 links FcγRIIB and Dectin-1 to blockcomplement-mediated inflammation,” Nature Medicine, vol. 18, no. 9, pp. 1401–1406, 2012. View at Publisher · View at Google Scholar
  131. L. Hellberg, K. Holdorf, M. Hänsel et al., “Methylprednisolone blocks autoantibody-induced tissue damage through inhibition of neutrophil activation,” Journal of Investigative Dermatology, 2013. View at Publisher · View at Google Scholar
  132. I. Shimanovich, S. Mihai, G. J. Oostingh et al., “Granulocyte-derived elastase and gelatinase B are required for dermal-epidermal separation induced by autoantibodies from patients with epidermolysis bullosa acquisita and bullous pemphigoid,” Journal of Pathology, vol. 204, no. 5, pp. 519–527, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. Z. Kopecki, R. M. Arkell, X. L. Strudwick et al., “Overexpression of the Flii gene increases dermal-epidermal blistering in an autoimmune ColVII mouse model of epidermolysis bullosa acquisita,” Journal of Pathology, vol. 225, no. 3, pp. 401–413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. Z. Kopecki, N. Ruzehaji, C. Turner et al., “Topically applied Flightless I neutralising antibodies improve healing of blistered skin in a murine model of epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 133, no. 4, pp. 1008–1016, 2013. View at Publisher · View at Google Scholar
  135. A. D. Whetton and T. M. Dexter, “Myeloid haemopoietic growth factors,” Biochimica et Biophysica Acta, vol. 989, no. 2, pp. 111–132, 1989. View at Publisher · View at Google Scholar · View at Scopus
  136. J. D. Griffin, S. A. Cannistra, R. Sullivan, G. D. Demetri, T. J. Ernst, and Y. Kanakura, “The biology of GM-CSF: regulation of production and interaction with its receptor,” International Journal of Cell Cloning, vol. 8, no. 1, pp. 35–45, 1990. View at Scopus
  137. J. R. Korzenik, B. K. Dieckgraefe, J. F. Valentine, D. F. Hausman, and M. J. Gilbert, “Sargramostim for active Crohn's disease,” New England Journal of Medicine, vol. 352, no. 21, pp. 2193–2201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. S. K. Sainathan, E. M. Hanna, Q. Gong et al., “Granulocyte macrophage colony-stimulating factor ameliorates DSS-induced experimental colitis,” Inflammatory Bowel Diseases, vol. 14, no. 1, pp. 88–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Kondo, S. Pastore, G. M. Shivji, R. C. McKenzie, and D. N. Sauder, “Characterization of epidermal cytokine profiles in sensitization and elicitation phases of allergic contact dermatitis as well as irritant contact dermatitis in mouse skin,” Lymphokine and Cytokine Research, vol. 13, no. 6, pp. 367–375, 1994. View at Scopus
  140. S. Gillessen, N. Mach, C. Small, M. Mihm, and G. Dranoff, “Overlapping roles for granulocyte-macrophage colony-stimulating factor and interleukin-3 in eosinophil homeostasis and contact hypersensitivity,” Blood, vol. 97, no. 4, pp. 922–928, 2001. View at Publisher · View at Google Scholar · View at Scopus
  141. I. K. Campbell, A. Bendele, D. A. Smith, and J. A. Hamilton, “Granulocyte-macrophage colony stimulating factor exacerbates collagen induced arthritis in mice,” Annals of the Rheumatic Diseases, vol. 56, no. 6, pp. 364–368, 1997. View at Scopus
  142. A. D. Cook, E. L. Braine, I. K. Campbell, M. J. Rich, and J. A. Hamilton, “Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease,” Arthritis Research, vol. 3, no. 5, pp. 293–298, 2001. View at Publisher · View at Google Scholar · View at Scopus
  143. C. Plater-Zyberk, L. A. B. Joosten, M. M. A. Helsen, J. Hepp, P. A. Baeuerle, and W. B. van den Berg, “GM-CSF neutralisation suppresses inflammation and protects cartilage in acute streptococcal cell wall arthritis of mice,” Annals of the Rheumatic Diseases, vol. 66, no. 4, pp. 452–457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. L. Codarri, G. Gyülvészii, V. Tosevski et al., “RORγ3t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation,” Nature Immunology, vol. 12, no. 6, pp. 560–567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Schön, D. Denzer, R. C. Kubitza, T. Ruzicka, and M. P. Schön, “Critical role of neutrophils for the generation of psoriasiform skin lesions in flaky skin mice,” Journal of Investigative Dermatology, vol. 114, no. 5, pp. 976–983, 2000. View at Publisher · View at Google Scholar · View at Scopus
  146. A. R. Kitching, X. R. Huang, A. L. Turner, P. G. Tipping, A. R. Dunn, and S. R. Holdsworth, “The requirement for granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in leukocyte-mediated immune glomerular injury,” Journal of the American Society of Nephrology, vol. 13, no. 2, pp. 350–358, 2002. View at Scopus
  147. F. A. Houssiau, J.-P. Devogelaer, J. van Damme, C. Nagant de Deuxchaisnes, and J. van Snick, “Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides,” Arthritis & Rheumatism, vol. 31, no. 6, pp. 784–788, 1988. View at Scopus
  148. Y. R. Mahida, L. Kurlac, A. Gallagher, and C. J. Hawkey, “High circulating concentrations of interleukin-6 in active Crohn's disease but not ulcerative colitis,” Gut, vol. 32, no. 12, pp. 1531–1534, 1991. View at Scopus
  149. A. Yokoyama, N. Kohno, S. Fujino et al., “Circulating interleukin-6 levels in patients with bronchial asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 151, no. 5, pp. 1354–1358, 1995. View at Scopus
  150. R. M. Grossman, J. Krueger, D. Yourish et al., “Interleukin 6 is expressed in high levels of psoriatic skin and stimulates proliferation of cultured human keratinocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 16, pp. 6367–6371, 1989. View at Scopus
  151. U. Eriksson, M. O. Kurrer, N. Schmitz et al., “Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3,” Circulation, vol. 107, no. 2, pp. 320–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. S. Ohshima, Y. Saeki, T. Mima et al., “Interleukin 6 plays a key role in the development of antigen-induced arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 14, pp. 8222–8226, 1998. View at Publisher · View at Google Scholar · View at Scopus
  153. T. Alonzi, E. Fattori, D. Lazzaro et al., “Interleukin 6 is required for the development of collagen-induced arthritis,” Journal of Experimental Medicine, vol. 187, no. 4, pp. 461–468, 1998. View at Publisher · View at Google Scholar · View at Scopus
  154. E. B. Samoilova, J. L. Horton, B. Hilliard, T.-S. T. Liu, and Y. Chen, “IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells,” Journal of Immunology, vol. 161, no. 12, pp. 6480–6486, 1998. View at Scopus
  155. R. N. Maini, P. C. Taylor, J. Szechinski et al., “Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate,” Arthritis & Rheumatism, vol. 54, no. 9, pp. 2817–2829, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Scheller, A. Chalaris, D. Schmidt-Arras, and S. Rose-John, “The pro- and anti-inflammatory properties of the cytokine interleukin-6,” Biochimica et Biophysica Acta, vol. 1813, no. 5, pp. 878–888, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. M. A. Nowell, P. J. Richards, S. Horiuchi et al., “Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble Glycoprotein 130,” Journal of Immunology, vol. 171, no. 6, pp. 3202–3209, 2003. View at Scopus
  158. M. A. Nowell, A. S. Williams, S. A. Carty et al., “Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis,” Journal of Immunology, vol. 182, no. 1, pp. 613–622, 2009. View at Scopus
  159. G. H. Waetzig and S. Rose-John, “Hitting a complex target: an update on interleukin-6 trans-signalling,” Expert Opinion on Therapeutic Targets, vol. 16, no. 2, pp. 225–236, 2012. View at Publisher · View at Google Scholar · View at Scopus
  160. M. C. Poffenberger, N. Straka, N. El Warry, D. Fang, I. Shanina, and M. S. Horwitz, “Lack of IL-6 during coxsackievirus infection heightens the early immune response resulting in increased severity of chronic autoimmune myocarditis,” PLoS ONE, vol. 4, no. 7, article e6207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. Z. Xing, J. Gauldie, G. Cox et al., “IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses,” Journal of Clinical Investigation, vol. 101, no. 2, pp. 311–320, 1998. View at Scopus
  162. S. Grivennikov, E. Karin, J. Terzic et al., “IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer,” Cancer Cell, vol. 15, no. 2, pp. 103–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. J. O. Jin, X. Han, and Q. Yu, “Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation,” Journal of Autoimmunity, vol. 40, pp. 28–44, 2013. View at Publisher · View at Google Scholar
  164. A. Klos, A. J. Tenner, K.-O. Johswich, R. R. Ager, E. S. Reis, and J. Köhl, “The role of the anaphylatoxins in health and disease,” Molecular Immunology, vol. 46, no. 14, pp. 2753–2766, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. Y. Wang, J. Kristan, L. Hao, C. S. Lenkoski, Y. Shen, and L. A. Matis, “A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis,” Journal of Immunology, vol. 164, no. 8, pp. 4340–4347, 2000. View at Scopus
  166. X. Zhang and J. Kohl, “A complex role for complement in allergic asthma,” Expert Review of Clinical Immunology, vol. 6, no. 2, pp. 269–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. Z. Liu, G. J. Giudice, S. J. Swartz et al., “The role of complement in experimental bullous pemphigoid,” Journal of Clinical Investigation, vol. 95, no. 4, pp. 1539–1544, 1995. View at Scopus
  168. M. Botto, C. Dell'Agnola, A. E. Bygrave et al., “Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies,” Nature Genetics, vol. 19, no. 1, pp. 56–59, 1998. View at Publisher · View at Google Scholar · View at Scopus
  169. K. Takahashi, J. Gordon, H. Liu et al., “Lack of mannose-binding lectin-A enhances survival in a mouse model of acute septic peritonitis,” Microbes and Infection, vol. 4, no. 8, pp. 773–784, 2002. View at Publisher · View at Google Scholar · View at Scopus
  170. E. Kolaczkowska and P. Kubes, “Neutrophil recruitment and function in health and inflammation,” Nature Reviews Immunology, vol. 13, pp. 159–175, 2013. View at Publisher · View at Google Scholar
  171. J. R. Mora and U. H. von Andrian, “T-cell homing specificity and plasticity: new concepts and future challenges,” Trends in Immunology, vol. 27, no. 5, pp. 235–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. H. H. Radeke, R. J. Ludwig, and W.-H. Boehnche, “Experimental approaches to lymphocyte migration in dermatology in vitro and in vivo,” Experimental Dermatology, vol. 14, no. 9, pp. 641–666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  173. M. P. Schön and R. J. Ludwig, “Lymphocyte trafficking to inflamed skin—molecular mechanisms and implications for therapeutic target molecules,” Expert Opinion on Therapeutic Targets, vol. 9, no. 2, pp. 225–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  174. R. J. Ludwig, T. M. Zollner, S. Santoso et al., “Junctional adhesion molecules (JAM)-B and -C contribute to leukocyte extravasation to the skin and mediate cutaneous inflammation,” Journal of Investigative Dermatology, vol. 125, no. 5, pp. 969–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  175. R. J. Ludwig, K. Hardt, M. Hatting et al., “Junctional adhesion molecule (JAM)-B supports lymphocyte rolling and adhesion through interaction with α4β1 integrin,” Immunology, vol. 128, no. 2, pp. 196–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Allhorn and M. Collin, “Sugar-free antibodies—the bacterial solution to autoimmunity?” Annals of the New York Academy of Sciences, vol. 1173, pp. 664–669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. F. Nimmerjahn and J. V. Ravetch, “Fcγ receptors as regulators of immune responses,” Nature Reviews Immunology, vol. 8, no. 1, pp. 34–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. T. Yuasa, S. Kubo, T. Yoshino et al., “Deletion of Fcγ receptor IIB renders H-2b mice susceptible to collagen-induced arthritis,” Journal of Experimental Medicine, vol. 189, no. 1, pp. 187–194, 1999. View at Publisher · View at Google Scholar · View at Scopus
  179. A. Nakamura, T. Yuasa, A. Ujike et al., “Fcγ receptor IIB-deficient mice develop goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease,” Journal of Experimental Medicine, vol. 191, no. 5, pp. 899–905, 2000. View at Publisher · View at Google Scholar · View at Scopus
  180. M. Zhao, M. E. Trimbeger, N. Li, L. A. Diaz, S. D. Shapiro, and Z. Liu, “Role of FcRs in animal model of autoimmune bullous pemphigoid,” Journal of Immunology, vol. 177, no. 5, pp. 3398–3405, 2006. View at Scopus
  181. N. Shushakova, J. Skokowa, J. Schulman et al., “C5a anaphylatoxin is a major regulator of activating versus inhibitory FcγRs in immune complex-induced lung disease,” Journal of Clinical Investigation, vol. 110, no. 12, pp. 1823–1830, 2002. View at Publisher · View at Google Scholar · View at Scopus
  182. J. Godau, T. Heller, H. Hawlisch et al., “C5a initiates the inflammatory cascade in immune complex peritonitis,” Journal of Immunology, vol. 173, no. 5, pp. 3437–3445, 2004. View at Scopus
  183. F. Kiefer, J. Brumell, N. Al-Alawi et al., “The Syk protein tyrosine kinase is essential for Fcγ/receptor signaling in macrophages and neutrophils,” Molecular and Cellular Biology, vol. 18, no. 7, pp. 4209–4220, 1998. View at Scopus
  184. S. L. Tan, C. Liao, M. C. Lucas, C. Stevenson, and J. A. Demartino, “Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives,” Pharmacology & Therapeutics, vol. 138, pp. 294–309, 2013. View at Publisher · View at Google Scholar
  185. L. G. Rider, N. Hirasawa, F. Santini, and M. A. Beaven, “Activation of the mitogen-activated protein kinase cascade is suppressed by low concentrations of dexamethasone in mast cells,” Journal of Immunology, vol. 157, no. 6, pp. 2374–2380, 1996. View at Scopus
  186. J. Chen, H. Tang, N. Hay, J. Xu, and R. D. Ye, “Akt isoforms differentially regulate neutrophil functions,” Blood, vol. 115, no. 21, pp. 4237–4246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. M. Faurschou and N. Borregaard, “Neutrophil granules and secretory vesicles in inflammation,” Microbes and Infection, vol. 5, no. 14, pp. 1317–1327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  188. J. W. Leiding and S. M. Holland, “Chronic Granulomatous Disease,” GeneReviews, 1993.
  189. A. J. Cowin, D. H. Adams, X. L. Strudwick et al., “Flightless I deficiency enhances wound repair by increasing cell migration and proliferation,” Journal of Pathology, vol. 211, no. 5, pp. 572–581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. R. M. Vodegel, M. F. Jonkman, H. H. Pas, and M. C. J. M. De Jong, “U-serrated immunodeposition pattern differentiates type VII collagen targeting bullous diseases from other subepidermal bullous autoimmune diseases,” British Journal of Dermatology, vol. 151, no. 1, pp. 112–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  191. J. B. Terra, J. M. Meijer, M. F. Jonkman, and G. F. Diercks, “The n- versus u-serration is a learnable criterion to differentiate pemphigoid from epidermolysis bullosa acquisita in direct immunofluorescence serration pattern analysis,” British Journal of Dermatology, 2013. View at Publisher · View at Google Scholar
  192. J. B. Terra, H. H. Pas, M. Hertl, F. G. Dikkers, N. Kamminga, and M. F. Jonkman, “Immunofluorescence serration pattern analysis as a diagnostic criterion in antilaminin-332 mucous membrane pemphigoid: immunopathological findings and clinical experience in 10 Dutch patients,” British Journal of Dermatology, vol. 165, no. 4, pp. 815–822, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. M. Chen, L. S. Chan, X. Cai, E. A. O'Toole, J. C. Sample, and D. T. Woodley, “Development of an ELISA for rapid detection of anti-type VII collagen autoantibodies in epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 108, no. 1, pp. 68–72, 1997. View at Scopus
  194. M. A. Saleh, K. Ishii, Y.-J. Kim et al., “Development of NC1 and NC2 domains of Type VII collagen ELISA for the diagnosis and analysis of the time course of epidermolysis bullosa acquisita patients,” Journal of Dermatological Science, vol. 62, no. 3, pp. 169–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  195. L. Komorowski, R. Müller, A. Vorobyev et al., “Sensitive and specific assays for routine serological diagnosis of epidermolysis bullosa acquisita,” Journal of the American Academy of Dermatology, vol. 68, pp. e89–3, 2012. View at Publisher · View at Google Scholar · View at Scopus
  196. C. Nieboer, D. M. Boorsma, M. J. Woerdeman, and G. L. Kalsbeek, “Epidermolysis bullosa acquisita. Immunofluorescence, electron microscopic and immuno-electron microscopic studies in four patients,” British Journal of Dermatology, vol. 102, no. 4, pp. 383–392, 1980. View at Scopus
  197. H. Yaoita, R. A. Briggaman, and T. J. Lawley, “Epidermolysis bullosa acquisita: ultrastructural and immunological studies,” Journal of Investigative Dermatology, vol. 76, no. 4, pp. 288–292, 1981. View at Scopus
  198. F. Caux, “Epidermolysis bullosa acquisita,” Presse Medicale, vol. 39, no. 10, pp. 1081–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  199. M. C. J. M. de Jong, S. Bruins, K. Heeres et al., “Bullous pemphigoid and epidermolysis bullosa acquisita: differentiation by fluorescence overlay antigen mapping,” Archives of Dermatology, vol. 132, no. 2, pp. 151–157, 1996. View at Publisher · View at Google Scholar · View at Scopus
  200. T. Kazama, Y. Yamamoto, T. Hashimoto, A. Komai, and M. Ito, “Application of confocal laser scanning microscopy to differential diagnosis of bullous pemphigoid and epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 138, no. 4, pp. 593–601, 1998. View at Publisher · View at Google Scholar · View at Scopus
  201. G. Hundorfean, M. F. Neurath, and C. Sitaru, “Autoimmunity against type VII collagen in inflammatory bowel disease,” Journal of Cellular and Molecular Medicine, vol. 14, no. 10, pp. 2393–2403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  202. H. Reddy, A. R. Shipman, and F. Wojnarowska, “Epidermolysis bullosa acquisita and inflammatory bowel disease: a review of the literature,” Clinical and Experimental Dermatology, vol. 38, pp. 225–230, 2013. View at Publisher · View at Google Scholar
  203. L. Engineer and A. R. Ahmed, “Emerging treatment for epidermolysis bullosa acquisita,” Journal of the American Academy of Dermatology, vol. 44, no. 5, pp. 818–828, 2001. View at Publisher · View at Google Scholar · View at Scopus
  204. J. H. Kim and S. C. Kim, “Epidermolysis bullosa acquisita,” Journal of the European Academy of Dermatology and Venereology, 2013. View at Publisher · View at Google Scholar
  205. S. M. Connolly and H. M. Sander, “Treatment of epidermolysis bullosa acquisita with cyclosporine,” Journal of the American Academy of Dermatology, vol. 16, no. 4, p. 890, 1987. View at Scopus
  206. M. L. Khatri, M. Benghazeil, and M. Shafi, “Epidermolysis bullosa acquisita responsive to cyclosporin therapy,” Journal of the European Academy of Dermatology and Venereology, vol. 15, no. 2, pp. 182–184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  207. J. C. Maize Jr. and J. B. Cohen, “Cyclosporine controls epidermolysis bullosa acquisita co-occuring with acquired factor VIII deficiency,” International Journal of Dermatology, vol. 44, no. 8, pp. 692–694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  208. M. Megahed and K. Scharfletter-Kochanek, “Epidermolysis bullosa acquisita—successful treatment with colchicine,” Archives of Dermatological Research, vol. 286, no. 1, pp. 35–40, 1994. View at Publisher · View at Google Scholar · View at Scopus
  209. B. B. Cunningham, T. T. T. Kirchmann, and D. Woodley, “Colchicine for epidermolysis bullosa acquisita,” Journal of the American Academy of Dermatology, vol. 34, no. 5, pp. 781–784, 1996. View at Publisher · View at Google Scholar · View at Scopus
  210. K. P. Arora, B. Sachdeva, N. Singh, and S. N. Bhattacharya, “Remission of recalcitrant epidermolysis bullosa acquisita (EBA) with colchicine monotherapy,” Journal of Dermatology, vol. 32, no. 2, pp. 114–119, 2005. View at Scopus
  211. N. Tanaka, T. Dainichi, B. Ohyama et al., “A case of epidermolysis bullosa acquisita with clinical features of Brunsting-Perry pemphigoid showing an excellent response to colchicine,” Journal of the American Academy of Dermatology, vol. 61, no. 4, pp. 715–719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  212. Y. Kiniwa, A. Ashida, A. Ohashi et al., “A case of epidermolysis bullosa acquisita associated with laryngeal stenosis,” Acta Dermato-Venereologica, vol. 92, no. 1, pp. 93–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  213. G. Driessen and M. van der Burg, “Educational paper: primary antibody deficiencies,” European Journal of Pediatrics, vol. 170, no. 6, pp. 693–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  214. D. B. Cines and V. S. Blanchette, “Medical progress: immune thrombocytopenic purpura,” New England Journal of Medicine, vol. 346, no. 13, pp. 995–1008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  215. N. Yuki, “Infectious origins of, and molecular mimicry in, Guillain-Barré and Fisher syndromes,” Lancet Infectious Diseases, vol. 1, no. 1, pp. 29–37, 2001. View at Publisher · View at Google Scholar · View at Scopus
  216. D. Fergusson, B. Hutton, M. Sharma et al., “Use of intravenous immunoglobulin for treatment of neurologic conditions: a systematic review,” Transfusion, vol. 45, no. 10, pp. 1640–1657, 2005. View at Scopus
  217. T. Kobayashi, T. Saji, T. Otani et al., “Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial,” The Lancet, vol. 379, no. 9826, pp. 1613–1620, 2012. View at Publisher · View at Google Scholar · View at Scopus
  218. M. Amagai, S. Ikeda, H. Shimizu et al., “A randomized double-blind trial of intravenous immunoglobulin for pemphigus,” Journal of the American Academy of Dermatology, vol. 60, no. 4, pp. 595–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  219. N. Ishii, T. Hashimoto, D. Zillikens, and R. J. Ludwig, “High-dose intravenous immunoglobulin (IVIG) therapy in autoimmune skin blistering diseases,” Clinical Reviews in Allergy and Immunology, vol. 38, no. 2-3, pp. 186–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  220. A. R. Ahmed and H. M. Gürcan, “Treatment of epidermolysis bullosa acquisita with intravenous immunoglobulin in patients non-responsive to conventional therapy: clinical outcome and post-treatment long-term follow-up,” Journal of the European Academy of Dermatology and Venereology, vol. 26, pp. 1074–1083, 2012. View at Publisher · View at Google Scholar · View at Scopus
  221. A. P. Hughes and J. P. Callen, “Epidermolysis bullosa acquisita responsive to dapsone therapy,” Journal of Cutaneous Medicine and Surgery, vol. 5, no. 5, pp. 397–399, 2001. View at Publisher · View at Google Scholar · View at Scopus
  222. G. Kirtschig, D. Murrell, F. Wojnarowska, and N. Khumalo, “Interventions for mucous membrane pemphigoid and epidermolysis bullosa acquisita,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD004056, 2003. View at Scopus
  223. P. Joly, H. Mouquet, J.-C. Roujeau et al., “A single cycle of rituximab for the treatment of severe pemphigus,” New England Journal of Medicine, vol. 357, no. 6, pp. 545–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  224. M. Kasperkiewicz, I. Shimanovich, R. J. Ludwig, C. Rose, D. Zillikens, and E. Schmidt, “Rituximab for treatment-refractory pemphigus and pemphigoid: a case series of 17 patients,” Journal of the American Academy of Dermatology, vol. 65, no. 3, pp. 552–558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  225. S. K. McKinley, J. T. Huang, J. Tan, D. Kroshinsky, and S. Gellis, “A case of recalcitrant epidermolysis bullosa acquisita responsive to rituximab therapy,” Pediatric Dermatology, 2012. View at Publisher · View at Google Scholar
  226. J. H. Kim, S. E. Lee, and S.-C. Kim, “Successful treatment of epidermolysis bullosa acquisita with rituximab therapy,” Journal of Dermatology, vol. 39, no. 5, pp. 477–479, 2012. View at Publisher · View at Google Scholar · View at Scopus
  227. C. Meissner, M. Hoefeld-Fegeler, R. Vetter et al., “Severe acral contractures and nail loss in a patient with mechano-bullous Epidermolysis bullosa acquisita,” European Journal of Dermatology, vol. 20, no. 4, pp. 543–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  228. I. Kubisch, P. Diessenbacher, E. Schmidt, H. Gollnick, and M. Leverkus, “Premonitory epidermolysis bullosa acquisita mimicking eyelid dermatitis: successful treatment with rituximab and protein a immunoapheresis,” American Journal of Clinical Dermatology, vol. 11, no. 4, pp. 289–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  229. M. Saha, T. Cutler, B. Bhogal, M. M. Black, and R. W. Groves, “Correspondence: refractory epidermolysis bullosa acquisita: successful treatment with rituximab,” Clinical and Experimental Dermatology, vol. 34, no. 8, pp. e979–e980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  230. A. Cavailhes, B. Balme, D. Gilbert, and F. Skowron, “Successful use of combined corticosteroids and rituximab in the treatment of recalcitrant epidermolysis bullosa acquisita,” Annales de Dermatologie et de Venereologie, vol. 136, no. 11, pp. 795–799, 2009. View at Publisher · View at Google Scholar · View at Scopus
  231. P. Mercader, J. M. Rodenas, A. Peña, and J. M. Mascaro Jr., “Fatal Pseudomona pneumonia following rituximab therapy in a patient with epidermolysis bullosa acquisita,” Journal of the European Academy of Dermatology and Venereology, vol. 21, no. 8, pp. 1141–1142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  232. E. Sadler, B. Schafleitner, C. Lanschuetzer et al., “Treatment-resistant classical epidermolysis bullosa acquisita responding to rituximab,” British Journal of Dermatology, vol. 157, no. 2, pp. 417–419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  233. A. Niedermeier, R. Eming, M. Pfütze et al., “Clinical response of severe mechanobullous epidermolysis bullosa acquisita to combined treatment with immunoadsorption and rituximab (anti-CD20 monoclonal antibodies),” Archives of Dermatology, vol. 143, no. 2, pp. 192–198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  234. S. M. Crichlow, N. J. Mortimer, and K. E. Harman, “A successful therapeutic trial of rituximab in the treatment of a patient with recalcitrant, high-titre epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 156, no. 1, pp. 194–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  235. E. Schmidt, S. Benoit, E.-B. Bröcker, D. Zillikens, and M. Goebeler, “Successful adjuvant treatment of recalcitrant epidermolysis bullosa acquisita with anti-CD20 antibody rituximab,” Archives of Dermatology, vol. 142, no. 2, pp. 147–150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  236. E. Schmidt and D. Zillikens, “Immunoadsorption in dermatology,” Archives of Dermatological Research, vol. 302, no. 4, pp. 241–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. M. Furue, M. Iwata, and H.-I. Yoon, “Epidermolysis bullosa acquisita: clinical response to plasma exchange therapy and circulating anti-basement membrane zone antibody titer,” Journal of the American Academy of Dermatology, vol. 14, no. 5, pp. 873–878, 1986. View at Scopus
  238. J. L. Miller, G. P. Stricklin, J. D. Fine, L. E. King, M. del Carmen Arzubiaga, and D. L. Ellis, “Remission of severe epidermolysis bullosa acquisita induced by extracorporeal photochemotherapy,” British Journal of Dermatology, vol. 133, no. 3, pp. 467–471, 1995. View at Publisher · View at Google Scholar · View at Scopus
  239. K. B. Gordon, L. S. Chan, and D. T. Woodley, “Treatment of refractory epidermolysis bullosa acquisita with extracorporeal photochemotherapy,” British Journal of Dermatology, vol. 136, no. 3, pp. 415–420, 1997. View at Scopus
  240. H. Sanli, B. N. Akay, E. Ayyildiz, R. Anadolu, and O. Ilhan, “Remission of severe autoimmune bullous disorders induced by long-term extracorporeal photochemotherapy,” Transfusion and Apheresis Science, vol. 43, no. 3, pp. 353–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  241. B. Baroudjian, C. Le Roux-Villet, S. Brechignac et al., “Long-term efficacy of extracorporeal photochemotherapy in a patient with refractory epidermolysis bullosa acquisita,” European Journal of Dermatology, vol. 22, no. 6, pp. 795–797, 2012.
  242. S. Z. Usmani and G. Chiosis, “HSP90 inhibitors as therapy for multiple myeloma,” Clinical Lymphoma, Myeloma and Leukemia, vol. 11, supplement 1, pp. S77–S81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  243. S. Pacey, R. H. Wilson, M. Walton et al., “A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors,” Clinical Cancer Research, vol. 17, no. 6, pp. 1561–1570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  244. ClinicalTrials.gov, “Clinical studies using teplizumab,” 2012.
  245. ClinicalTrials.gov, “Clinical studies using otelixizumab,” 2012.
  246. Y. H. Kim, M. Duvic, E. Obitz et al., “Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma,” Blood, vol. 109, no. 11, pp. 4655–4662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  247. B. W. van Oosten, M. Lai, S. Hodgkinson et al., “Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR- monitored phase II trial,” Neurology, vol. 49, no. 2, pp. 351–357, 1997. View at Scopus
  248. A. Stronkhorst, S. Radema, S.-L. Yong et al., “CD4 antibody treatment in patients with active Crohn's disease: a phase 1 dose finding study,” Gut, vol. 40, no. 3, pp. 320–327, 1997. View at Scopus
  249. D. Meyersburg, E. Schmidt, M. Kasperkiewicz, and D. Zillikens, “Immunoadsorption in dermatology,” Therapeutic Apheresis and Dialysis, vol. 16, pp. 311–320, 2012. View at Publisher · View at Google Scholar
  250. IA-PEM., 2013, https://drks-neu.uniklinik-freiburg.de/drks_web/.
  251. Y. Nagatomo, A. Baba, H. Ito et al., “Specific immunoadsorption therapy using a tryptophan column in patients with refractory heart failure due to dilated cardiomyopathy,” Journal of Clinical Apheresis, vol. 26, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  252. P. Sondermann and U. Jacob, “Human Fcγ receptor IIb expressed in Escherichia coli reveals IgG binding capability,” Biological Chemistry, vol. 380, no. 6, pp. 717–721, 1999. View at Publisher · View at Google Scholar · View at Scopus
  253. “Clinical trials using SM101,” 2012, http://clinicaltrials.gov/.
  254. S. Werwitzke, D. Trick, P. Sondermann et al., “Treatment of lupus-prone NZB/NZW F1 mice with recombinant soluble Fcγ receptor II (CD32),” Annals of the Rheumatic Diseases, vol. 67, no. 2, pp. 154–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  255. S. E. Magnusson, M. Andrén, K. E. Nilsson, P. Sondermann, U. Jacob, and S. Kleinau, “Amelioration of collagen-induced arthritis by human recombinant soluble FcγRIIb,” Clinical Immunology, vol. 127, no. 2, pp. 225–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  256. N. Tubridy, P. O. Behan, R. Capildeo et al., “The effect of anti-α4 integrin antibody on brain lesion activity in MS,” Neurology, vol. 53, no. 3, pp. 466–472, 1999. View at Scopus
  257. A. Langer-Gould, S. W. Atlas, A. J. Green, A. W. Bollen, and D. Pelletier, “Progressive multifocal leukoencephalopathy in a patient treated with natalizumab,” New England Journal of Medicine, vol. 353, no. 4, pp. 375–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  258. J. M. Reichert, “Marketed therapeutic antibodies compendium,” MAbs, vol. 4, pp. 413–415, 2012.
  259. M. Friedrich, D. Bock, S. Philipp et al., “Pan-selectin antagonism improves psoriasis manifestation in mice and man,” Archives of Dermatological Research, vol. 297, no. 8, pp. 345–351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  260. M. Bhushan, T. O. Bleiker, A. E. Ballsdon et al., “Anti-e-selectin is ineffective in the treatment of psoriasis: a randomized trial,” British Journal of Dermatology, vol. 146, no. 5, pp. 824–831, 2002. View at Publisher · View at Google Scholar · View at Scopus
  261. T. Ishida, T. Joh, N. Uike et al., “Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study,” Journal of Clinical Oncology, vol. 30, no. 8, pp. 837–842, 2012. View at Publisher · View at Google Scholar · View at Scopus
  262. P. Mirshahpanah, Y.-Y. Y. Li, N. Burkhardt, K. Asadullah, and T. M. Zollner, “CCR4 and CCR10 ligands play additive roles in mouse contact hypersensitivity,” Experimental Dermatology, vol. 17, no. 1, pp. 30–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  263. R. J. Ludwig, S. Alban, and W.-H. Boehncke, “Structural requirements of heparin and related molecules to exert a multitude of anti-inflammatory activities,” Mini-Reviews in Medicinal Chemistry, vol. 6, no. 9, pp. 1009–1023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  264. J. Fritzsche, S. Alban, R. J. Ludwig et al., “The influence of various structural parameters of semisynthetic sulfated polysaccharides on the P-selectin inhibitory capacity,” Biochemical Pharmacology, vol. 72, no. 4, pp. 474–485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  265. M. Becker, G. Franz, and S. Alban, “Inhibition of PMN-elastase activity by semisynthetic glucan sulfates,” Thrombosis and Haemostasis, vol. 89, no. 5, pp. 915–925, 2003. View at Scopus
  266. S. Alban, R. J. Ludwig, G. Bendas et al., “PS3, A semisynthetic Β-1,3-glucan sulfate, diminishes contact hypersensitivity responses through inhibition of L- and P-selectin functions,” Journal of Investigative Dermatology, vol. 129, no. 5, pp. 1192–1202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  267. A. Citro, E. Cantarelli, P. Maffi et al., “CXCR1/2 inhibition enhances pancreatic islet survival after transplantation,” The Journal of Clinical Investigation, vol. 122, pp. 3647–3651, 2012. View at Publisher · View at Google Scholar
  268. S. W. Schneider, M. Gaubitz, T. A. Luger, and G. Bonsmann, “Prompt response of refractory Schnitzler syndrome to treatment with anakinra,” Journal of the American Academy of Dermatology, vol. 56, no. 5, pp. S120–S122, 2007. View at Publisher · View at Google Scholar · View at Scopus