About this Journal Submit a Manuscript Table of Contents
ISRN Dermatology
Volume 2013 (2013), Article ID 825180, 12 pages
http://dx.doi.org/10.1155/2013/825180
Research Article

Emptying of Intracellular Calcium Pool and Oxidative Stress Imbalance Are Associated with the Glyphosate-Induced Proliferation in Human Skin Keratinocytes HaCaT Cells

Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India

Received 16 May 2013; Accepted 17 July 2013

Academic Editors: C. Feliciani and A. Zalewska

Copyright © 2013 Jasmine George and Yogeshwer Shukla. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Malik, G. Barry, and G. Kishore, “The herbicide glyphosate,” Biofactors, vol. 2, no. 1, pp. 17–25, 1989. View at Scopus
  2. G. M. Williams, R. Kroes, and I. C. Munro, “Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans,” Regulatory Toxicology and Pharmacology, vol. 31, no. 2, part 1, pp. 117–165, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. R. B. Bringolf, W. G. Cope, S. Mosher, M. C. Barnhart, and D. Shea, “Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of Lampsilis siliquoidea (Unionidae),” Environmental Toxicology and Chemistry, vol. 26, no. 10, pp. 2094–2100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Glusczak, V. L. Loro, A. Pretto et al., “Acute exposure to glyphosate herbicide affects oxidative parameters in piava (Leporinus obtusidens),” Archives of Environmental Contamination and Toxicology, vol. 61, no. 4, pp. 624–630, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. de Roos, S. H. Zahm, K. P. Cantor et al., “Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men,” Occupational and Environmental Medicine, vol. 60, no. 9, article E11, 2003. View at Scopus
  6. H. Hennings, D. Michael, C. Cheng, P. Steinert, K. Holbrook, and S. H. Yuspa, “Calcium regulation of growth and differentiation of mouse epidermal cells in culture,” Cell, vol. 19, no. 1, pp. 245–254, 1980. View at Publisher · View at Google Scholar
  7. A. H. Lichtman, G. B. Segel, and M. A. Lichtman, “The role of calcium in lymphocyte proliferation. (An interpretive review),” Blood, vol. 61, no. 3, pp. 413–422, 1983. View at Scopus
  8. M. Whitaker and R. Patel, “Calcium and cell cycle control,” Development, vol. 108, no. 4, pp. 525–542, 1990. View at Scopus
  9. M. J. Berridge, P. Lipp, and M. D. Bootman, “The versatility and universality of calcium signalling,” Nature Reviews Molecular Cell Biology, vol. 1, no. 1, pp. 11–21, 2000. View at Scopus
  10. A. Mueller, T. Bächi, M. Höchli, B. W. Schäfer, and C. W. Heizmann, “Subcellular distribution of S100 proteins in tumor cells and their relocation in response to calcium activation,” Histochemistry and Cell Biology, vol. 111, no. 6, pp. 453–459, 1999. View at Publisher · View at Google Scholar
  11. I. Salama, P. S. Malone, F. Mihaimeed, and J. L. Jones, “A review of the S100 proteins in cancer,” European Journal of Surgical Oncology, vol. 34, no. 4, pp. 357–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Donato, “S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles,” International Journal of Biochemistry and Cell Biology, vol. 33, no. 7, pp. 637–668, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. B. W. Schäfer and C. W. Heizmann, “The S100 family of EF-hand calcium-binding proteins: functions and pathology,” Trends in Biochemical Sciences, vol. 21, no. 4, pp. 134–140, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. R. L. Eckert, A. Broome, M. Ruse, N. Robinson, D. Ryan, and K. Lee, “S100 proteins in the epidermis,” Journal of Investigative Dermatology, vol. 123, no. 1, pp. 23–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Hua, J. Chen, B. Sun et al., “Specific expression of osteopontin and S100A6 in hepatocellular carcinoma,” Surgery, vol. 149, no. 6, pp. 783–791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Kawai, Y. Minamiya, and N. Takahashi, “Prognostic impact of S100A9 overexpression in non-small cell lung cancer,” Tumor Biology, vol. 32, no. 4, pp. 641–646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. B. C. Yoo, Y. K. Shin, S. B. Lim, S. H. Hong, S. Y. Jeong, and J. G. Park, “Evaluation of calgranulin B in stools from the patients with colorectal cancer,” Diseases of the Colon and Rectum, vol. 51, no. 11, pp. 1703–1709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. J. Weterman, G. M. Stoopen, G. N. P. van Muijen, J. Kuznicki, D. J. Ruiter, and H. P. J. Bloemers, “Expression of calcyclin in human melanoma cell lines correlates with metastatic behavior in nude mice,” Cancer Research, vol. 52, no. 5, pp. 1291–1296, 1992. View at Scopus
  19. R. Ciarcia, D. D'Angelo, C. Pacilio et al., “Dysregulated calcium homeostasis and oxidative stress in chronic myeloid leukemia (CML) cells,” Journal of Cellular Physiology, vol. 224, no. 2, pp. 443–453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Davies, “Protein damage and degradation by oxygen radicals. I. general aspects,” The Journal of Biological Chemistry, vol. 262, no. 20, pp. 9895–9901, 1987. View at Scopus
  21. I. Dalle-Donne, R. Rossi, R. Colombo, D. Giustarini, and A. Milzani, “Biomarkers of oxidative damage in human disease,” Clinical Chemistry, vol. 52, no. 4, pp. 601–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Packer and E. Cadenas, “Oxidants and antioxidants revisited. New concepts of oxidative stress,” Free Radical Research, vol. 41, no. 9, pp. 951–952, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. H. Burdon, “Superoxide and hydrogen peroxide in relation to mammalian cell proliferation,” Free Radical Biology and Medicine, vol. 18, no. 4, pp. 775–794, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Black, “The defensive role of anti-oxidants in skin carcinogenesis,” in Oxidative Stress in Dermatology, J. Fuchs and L. Packer, Eds., pp. 243–269, Marcel Dekker, New York, NY, USA, 1993.
  25. Y. Zhang, W. Zhao, H. J. Zhang, F. E. Domann, and L. W. Oberley, “Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth,” Cancer Research, vol. 62, no. 4, pp. 1205–1212, 2002. View at Scopus
  26. C. Weydert, B. Roling, J. Liu et al., “Suppression of the malignant phenotype in human pancreatic cancer cells by the overexpression of manganese superoxide dismutase,” Molecular Cancer Therapeutics, vol. 2, no. 4, pp. 361–369, 2003. View at Scopus
  27. L. Y. Chang, J. W. Slot, H. J. Geuze, and J. D. Crapo, “Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes,” Journal of Cell Biology, vol. 107, no. 6 I, pp. 2169–2179, 1988. View at Scopus
  28. H. Muramatsu, K. Kogawa, M. Tanaka et al., “Superoxide dismutase in SAS human tongue carcinoma cell line is a factor defining invasiveness and cell motility,” Cancer Research, vol. 55, no. 24, pp. 6210–6214, 1995. View at Scopus
  29. M. Tanaka, K. Kogawa, Y. Nishihori et al., “Suppression of intracellular Cu–Zn SOD results in enhanced motility and metastasis of Meth A sarcoma cells,” International Journal of Cancer, vol. 73, no. 2, pp. 187–192, 1997. View at Publisher · View at Google Scholar
  30. J. George, S. Prasad, Z. Mahmood, and Y. Shukla, “Studies on glyphosate-induced carcinogenicity in mouse skin: a proteomic approach,” Journal of Proteomics, vol. 73, no. 5, pp. 951–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Delescluse, N. Ledirac, G. de Sousa, M. Pralavorio, P. Lesca, and R. Rahmani, “Cytotoxic effects and induction of cytochromes P450 1A1/2 by insecticides, in hepatic or epidermal cells: binding capability to the Ah receptor,” Toxicology Letters, vol. 96-97, pp. 33–39, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Vega-Avila and M. K. Pugsley, “An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells,” Proceedings of the Western Pharmacology Society, vol. 54, pp. 10–14, 2011. View at Scopus
  33. A. Arora, K. Seth, N. Kalra, and Y. Shukla, “Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol,” Toxicology and Applied Pharmacology, vol. 202, no. 3, pp. 237–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Chen, L. Liu, and S. Huang, “Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5,” Free Radical Biology and Medicine, vol. 45, no. 7, pp. 1035–1044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. W. F. Heydens, C. E. Healy, K. J. Hotz et al., “Genotoxic potential of glyphosate formulations: mode-of-action investigations,” Journal of Agricultural and Food Chemistry, vol. 56, no. 4, pp. 1517–1523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Bolognesi, G. Carrasquilla, S. Volpi, K. R. Solomon, and E. J. P. Marshall, “Biomonitoring of genotoxic risk in agricultural workers from five Colombian regions: association to occupational exposure to glyphosate,” Journal of Toxicology and Environmental Health A, vol. 72, no. 15-16, pp. 986–997, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Mladinic, S. Berend, A. L. Vrdoljak, N. Kopjar, B. Radic, and D. Zeljezic, “Evaluation of genome damage and its relation to oxidative stress induced by glyphosate in human lymphocytes in vitro,” Environmental and Molecular Mutagenesis, vol. 50, no. 9, pp. 800–807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Gniadecki and B. Gajkowska, “Intracellular calcium pool emptying induces DNA synthesis in HaCaT keratinocytes,” Experimental Dermatology, vol. 12, no. 4, pp. 453–459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Pajak and A. Orzechowski, “Chapter 4: regulation of Clusterin activity by calcium,” Advances in cancer research, vol. 104, pp. 33–58, 2009. View at Scopus
  40. C. Elie-Caille, C. Heu, C. Guyon, and L. Nicod, “Morphological damages of a glyphosate-treated human keratinocyte cell line revealed by a micro- to nanoscale microscopic investigation,” Cell Biology and Toxicology, vol. 26, no. 4, pp. 331–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Das, A. Roy, N. Dutta, and H. K. Majumder, “Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani,” Apoptosis, vol. 13, no. 7, pp. 867–882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. X. H. Cao, S. S. Zhao, D. Y. Liu et al., “ROS-Ca2+ is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis,” Chemico-Biological Interactions, vol. 190, no. 1, pp. 16–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Martín, F. Herrera, G. García-Santos, I. Antolín, J. Rodriguez-Blanco, and C. Rodriguez, “Signaling pathways involved in antioxidant control of glioma cell proliferation,” Free Radical Biology and Medicine, vol. 42, no. 11, pp. 1715–1722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Molinari, “Cell cycle checkpoints and their inactivation in human cancer,” Cell Proliferation, vol. 33, no. 5, pp. 261–274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. A. Stewart, M. D. Westfall, and J. A. Pietenpol, “Cell-cycle dysregulation and anticancer therapy,” Trends in Pharmacological Sciences, vol. 24, no. 3, pp. 139–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Kowalczyk, M. C. Kowalczyk, J. J. Junco et al., “The possible separation of 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation and hyperplasia by compound A,” Molecular Carcinogenesis, vol. 52, no. 6, pp. 488–496, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Schlingemann, J. Hess, G. Wrobel et al., “Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells,” International Journal of Cancer, vol. 104, no. 6, pp. 699–708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Tyagi, J. George, R. Singh, K. Bhui, and Y. Shukla, “Neoplastic alterations induced in mammalian skin following mancozeb exposure using in vivo and in vitro models,” OMICS, vol. 15, no. 3, pp. 155–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. E. D. Emberley, L. C. Murphy, and P. H. Watson, “S100 proteins and their influence on pro-survival pathways in cancer,” Biochemistry and Cell Biology, vol. 82, no. 4, pp. 508–515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Gebhardt, J. Németh, P. Angel, and J. Hess, “S100A8 and S100A9 in inflammation and cancer,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1622–1631, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Leśniak, P. Ł. Słomnicki, and A. Filipek, “S100A6—new facts and features,” Biochemical and Biophysical Research Communications, vol. 390, no. 4, pp. 1087–1092, 2009. View at Publisher · View at Google Scholar
  52. M. Sastry, R. R. Ketchem, O. Crescenzi et al., “The three-dimensional structure of Ca2+-bound calcyclin: implications for Ca2+-signal transduction by S100 proteins,” Structure, vol. 6, no. 2, pp. 223–231, 1998. View at Scopus
  53. C. J. Hanson, M. D. Bootman, and H. L. Roderick, “Cell signalling: IP3 receptors channel calcium into cell death,” Current Biology, vol. 14, no. 21, pp. R933–R935, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. R. L. Patterson, D. Boehning, and S. H. Snyder, “Inositol 1,4,5-trisphosphate receptors as signal integrators,” Annual Review of Biochemistry, vol. 73, pp. 437–465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Orrenius, B. Zhivotovsky, and P. Nicotera, “Regulation of cell death: the calcium-apoptosis link,” Nature Reviews Molecular Cell Biology, vol. 4, no. 7, pp. 552–565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. S. K. Joseph and G. Hajnóczky, “IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond,” Apoptosis, vol. 12, no. 5, pp. 951–968, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Boehning, R. L. Patterson, L. Sedaghat, N. O. Glebova, T. Kurosaki, and S. H. Snyder, “Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis,” Nature Cell Biology, vol. 5, no. 12, pp. 1051–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Chen, I. Valencia, F. Zhong et al., “Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate,” Journal of Cell Biology, vol. 166, no. 2, pp. 193–203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Rong, A. S. Aromolaran, G. Bultynck et al., “Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals,” Molecular Cell, vol. 31, no. 2, pp. 255–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. C. White, C. Li, J. Yang et al., “The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R,” Nature Cell Biology, vol. 7, no. 10, pp. 1021–1028, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Jayaraman and A. R. Marks, “T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis,” Molecular and Cellular Biology, vol. 17, no. 6, pp. 3005–3012, 1997. View at Scopus
  62. T. Szado, V. Vanderheyden, J. B. Parys et al., “Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2427–2432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Scorrano, S. A. Oakes, J. T. Opferman et al., “BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis,” Science, vol. 300, no. 5616, pp. 135–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Rong and C. W. Distelhorst, “Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis,” Annual Review of Physiology, vol. 70, pp. 73–91, 2008. View at Publisher · View at Google Scholar · View at Scopus