About this Journal Submit a Manuscript Table of Contents
ISRN Electrochemistry
Volume 2013 (2013), Article ID 403542, 10 pages
http://dx.doi.org/10.1155/2013/403542
Research Article

Inhibition of Mild Steel Corrosion in Sulphuric Acid Using Esomeprazole and the Effect of Iodide Ion Addition

Department of Chemistry, Gandhigram Rural Institute-Deemed University, Gandhigram, Tamil Nadu 624302, India

Received 30 January 2013; Accepted 26 February 2013

Academic Editors: C. Bao, F. Deflorian, C. Gervasi, and E. M. Richter

Copyright © 2013 G. Karthik and M. Sundaravadivelu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Ali, M. T. Saeed, and S. V. Rahman, “The isoxazolidines: a new class of corrosion inhibitors of mild steel in acidic medium,” Corrosion Science, vol. 45, no. 2, pp. 253–266, 2003. View at Publisher · View at Google Scholar
  2. F. Bentiss, M. Lagrence, M. Traisnel, and J. C. Hornez, “The corrosion inhibition of mild steel in acidic media by a new triazole derivative,” Corrosion Science, vol. 41, no. 4, pp. 789–803, 1999. View at Publisher · View at Google Scholar
  3. M. A. Quraishi, R. Sardar, and D. Jamal, “Corrosion inhibition of mild steel in hydrochloric acid by some aromatic hydrazides,” Materials Chemistry and Physics, vol. 71, no. 3, pp. 309–313, 2001. View at Publisher · View at Google Scholar
  4. R. A. Prabhu, A. V. Shanbhag, and T. V. Venkatesha, “Influence of tramadol [2-[(dimethylamino)methyl]-1-(3-methoxyphenyl) cyclohexanol hydrate] on corrosion inhibition of mild steel in acidic media,” Journal of Applied Electrochemistry, vol. 37, no. 4, pp. 491–497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. P. Zhao and G. N. Mu, “The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid,” Corrosion Science, vol. 41, no. 10, pp. 1937–1944, 1999. View at Publisher · View at Google Scholar
  6. I. . Ahamed and M. A. Quraishi, “Mebendazole: new and efficient corrosion inhibitor for mild steel in acid medium,” Corrosion Science, vol. 52, no. 2, pp. 651–656, 2010. View at Publisher · View at Google Scholar
  7. W.-h. Li, Q. He, S.-t. Zhang, C. l. Pei, and B.-r. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008. View at Publisher · View at Google Scholar
  8. S. A. Umoren and E. E. Ebenso, “The synergistic effect of polyacrylamide and iodide ions on the corrosion inhibition of mild steel in H2SO4,” Materials Chemistry and Physics, vol. 106, no. 2-3, pp. 387–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. T. Foley, “Role of the chloride ion in iron corrosion,” Corrosion, vol. 26, no. 2, pp. 58–70, 1970. View at Scopus
  10. M. A. Quraishi and J. Rawat, “Corrosion inhibition of mild steel in acid solutions by tetramethyl-dithia-octaazacyclotetradeca hexaene (MTAT),” Anti-Corrosion Methods and Materials, vol. 47, no. 5, pp. 288–293, 2000. View at Scopus
  11. S. Khan and M. A. Quraishi, “Synergistic effect of potassium iodide on inhibitive performance of thiadiazoles during corrosion of mild steel in 20% sulfuric acid,” The Arabian Journal For Science and Engineering, vol. 35, no. 1A, pp. 71–82, 2010.
  12. L. M. Vracar and D. M. Drazic, “Adsorption and corrosion inhibitive properties of some organic molecules on iron electrode in sulfuric acid,” Corrosion Science, vol. 44, no. 8, pp. 1669–1680, 2002. View at Publisher · View at Google Scholar
  13. W. A. Badawy, K. M. Ismail, and A. M. Fathi, “Corrosion control of Cu-Ni alloys in neutral chloride solutions by amino acids,” Electrochimica Acta, vol. 51, no. 20, pp. 4182–4189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Migahed, H. M. Mohammed, and A. M. Al-Sabagh, “Corrosion inhibition of H-11 type carbon steel in 1 M hydrochloric acid solution by N-propyl amino lauryl amide and its ethoxylated derivatives,” Materials Chemistry and Physics, vol. 80, no. 1, pp. 169–175, 2003. View at Publisher · View at Google Scholar
  15. A. A. Abdul Azim, L. A. Shalaby, and H. Abbas, “Mechanism of the corrosion inhibition of Zn Anode in NaOH by gelatine and some inorganic anions,” Corrosion Science, vol. 14, no. 1, pp. 21–24, 1974. View at Scopus
  16. M. Hosseini, S. F. L. Mertens, and M. R. Arshadi, “Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine,” Corrosion Science, vol. 45, no. 7, pp. 1473–1489, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. X. H. Li and G. N. Mu, “Tween-40 as corrosion inhibitor for cold rolled steel in sulphuric acid: weight loss study, electrochemical characterization, and AFM,” Applied Surface Science, vol. 252, no. 5, pp. 1254–1265, 2005. View at Publisher · View at Google Scholar
  18. T. Szauer and A. Brand, “Mechanism of inhibition of electrode reactions at high surface coverages-II,” Electrochimica Acta, vol. 26, no. 9, pp. 1219–1224, 1981. View at Publisher · View at Google Scholar
  19. L. Larabi, Y. Harek, M. Traisnel, and A. Mansri, “Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1 M HCl,” Journal of Applied Electrochemistry, vol. 34, no. 8, pp. 833–839, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Li, S. Deng, and H. Fu, “Benzyltrimethylammonium iodide as a corrosion inhibitor for steel in phosphoric acid produced by dihydrate wet method process,” Corrosion Science, vol. 53, no. 5, pp. 664–670, 2011. View at Publisher · View at Google Scholar
  21. C. N. Cao, “On electrochemical techniques for interface inhibitor research,” Corrosion Science, vol. 38, no. 12, pp. 2073–2082, 1996. View at Publisher · View at Google Scholar
  22. E. S. Ferreira, C. Giancomelli, F. C. Giacomelli, and A. Spinelli, “Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel,” Materials Chemistry and Physics, vol. 83, no. 1, pp. 129–134, 2004. View at Publisher · View at Google Scholar
  23. S. S. Abdel-Rehim, M. A. M. Ibrahim, and K. F. Khaled, “The inhibition of 4-(2-amino-5-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution,” Materials Chemistry and Physics, vol. 70, no. 3, pp. 268–273, 2001. View at Publisher · View at Google Scholar
  24. A. K. Singh and M. A. Quraishi, “Effect of Cefazolin on the corrosion of mild steel in HCl solution,” Corrosion Science, vol. 52, no. 1, pp. 152–160, 2010. View at Publisher · View at Google Scholar · View at Scopus