About this Journal Submit a Manuscript Table of Contents
ISRN Endocrinology
Volume 2012 (2012), Article ID 549875, 6 pages
http://dx.doi.org/10.5402/2012/549875
Research Article

miR-320 Regulates Glucose-Induced Gene Expression in Diabetes

1Department of Pathology, Western University, London, ON, Canada N6A 5C1
2London Health Science Centre, 339 Windermere Road, London, ON, Canada N6A 5A5

Received 18 April 2012; Accepted 22 June 2012

Academic Editors: C. Bizzarri, J. Mittag, and H. Tamemoto

Copyright © 2012 Biao Feng and Subrata Chakrabarti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Zampetaki and M. Mayr, “MicroRNAs in vascular and metabolic disease,” Circulation Research, vol. 110, no. 3, pp. 508–522, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Li, Y. H. Song, F. Li, T. Yang, Y. W. Lu, and Y. J. Geng, “MicroRNA-221 regulates high glucose-induced endothelial dysfunction,” Biochemical and Biophysical Research Communications, vol. 381, no. 1, pp. 81–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. E. Creemers, A. J. Tijsen, and Y. M. Pinto, “Circulating MicroRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?” Circulation Research, vol. 110, no. 3, pp. 483–495, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. B. S. Kasinath and D. Feliers, “The complex world of kidney MicroRNAs,” Kidney International, vol. 80, no. 4, pp. 334–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Landi, F. Gemignani, and S. Landi, “Role of variations within microRNA-binding sites in cancer,” Mutagenesis, vol. 27, no. 2, pp. 205–210, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Liu, M. A. Valencia-Sanchez, G. J. Hannon, and R. Parker, “MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies,” Nature Cell Biology, vol. 7, no. 7, pp. 719–723, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Yang and L. Wang, “Regulation of MicroRNA expression and function by nuclear receptor signaling,” Cell and Bioscience, vol. 1, no. 1, article 31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Flynt and E. C. Lai, “Biological principles of microRNA-mediated regulation: shared themes amid diversity,” Nature Reviews Genetics, vol. 9, no. 11, pp. 831–842, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. McArthur, B. Feng, Y. Wu, S. Chen, and S. Chakrabarti, “MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy,” Diabetes, vol. 60, no. 4, pp. 1314–1323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Feng, S. Chen, K. McArthur et al., “miR-146a-mediated extracellular matrix protein production in chronic diabetes complications,” Diabetes, vol. 60, no. 11, pp. 2975–2984, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kato, J. Zhang, M. Wang et al., “MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3432–3437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Carè, D. Catalucci, F. Felicetti et al., “MicroRNA-133 controls cardiac hypertrophy,” Nature Medicine, vol. 13, no. 5, pp. 613–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. G. Schalkwijk and C. D. A. Stehouwer, “Vascular complications in diabetes mellitus: the role of endothelial dysfunction,” Clinical Science, vol. 109, no. 2, pp. 143–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Chen, M. D. Apostolova, M. G. Cherian, and S. Chakrabarti, “Interaction of endothelin-1 with vasoactive factors in mediating glucose-induced increased permeability in endothelial cells,” Laboratory Investigation, vol. 80, no. 8, pp. 1311–1321, 2000. View at Scopus
  16. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. P. Lakshmanan, R. A. Thandavarayan, K. Watanabe et al., “Modulation of AT-1R/MAPK cascade by an olmesartan treatment attenuates diabetic nephropathy in streptozotocin-induced diabetic mice,” Molecular and Cellular Endocrinology, vol. 348, no. 1, pp. 104–111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. P. Lakshmanan, M. Harima, V. Sukumaran et al., “Modulation of AT-1R/AMPK-MAPK cascade plays crucial role for the pathogenesis of diabetic cardiomyopathy in transgenic type 2 diabetic (Spontaneous Diabetic Torii) rats,” Biochemical Pharmacology, vol. 83, no. 5, pp. 653–660, 2012.
  19. X. Xin, Z. A. Khan, S. Chen, and S. Chakrabarti, “Extracellular signal-regulated kinase (ERK) in glucose-induced and endothelin-mediated fibronectin synthesis,” Laboratory Investigation, vol. 84, no. 11, pp. 1451–1459, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. X. P. Ren, J. Wu, X. Wang et al., “MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20,” Circulation, vol. 119, no. 17, pp. 2357–2366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Zampetaki, S. Kiechl, I. Drozdov et al., “Plasma MicroRNA profiling reveals loss of endothelial miR-126 and other MicroRNAs in type 2 diabetes,” Circulation Research, vol. 107, no. 6, pp. 810–817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. X. H. Wang, R. Z. Qian, W. Zhang, S. F. Chen, H. M. Jin, and R. M. Hu, “MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats,” Clinical and Experimental Pharmacology and Physiology, vol. 36, no. 2, pp. 181–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Feng, S. Chen, B. George, Q. Feng, and S. Chakrabarti, “miR133a regulates cardiomyocyte hypertrophy in diabetes,” Diabetes/Metabolism Research and Reviews, vol. 26, no. 1, pp. 40–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Wang, B. George, S. Chen, B. Feng, X. Li, and S. Chakrabarti, “Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats,” Diabetes/Metabolism Research and Reviews, vol. 28, no. 4, pp. 329–337, 2012. View at Publisher · View at Google Scholar · View at Scopus