About this Journal Submit a Manuscript Table of Contents
ISRN Endocrinology
Volume 2012 (2012), Article ID 768159, 13 pages
http://dx.doi.org/10.5402/2012/768159
Review Article

Mass Spectrometry for Diabetic Nephropathy Monitoring: New Effective Tools for Physicians

1Department of Medicine, University of Padova, Via Giustiniani 2, 35137 Padova, Italy
2Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Corso Stati Uniti 4, 35127 Padova, Italy

Received 23 December 2011; Accepted 22 January 2012

Academic Editor: C. Bartsch

Copyright © 2012 Annunziata Lapolla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Collins, B. Kasiske, C. Herzog et al., “Excerpts from the United States Renal Data System 2004 Annual Data Report. Atlas of end-stage renal disease in the United States,” American Journal of Kidney Diseases, vol. 45, no. 1, pp. 5–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. L. Caramori and M. Mauer, “Diabetes and nephropathy,” Current Opinion in Nephrology and Hypertension, vol. 12, no. 3, pp. 273–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. E. Declèves and K. Sharma, “New pharmacological treatments for improving renal outcomes in diabetes,” Nature Reviews, vol. 6, no. 6, pp. 371–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. H. H. Parving, H. Lehnert, J. Brochner-Mortensen, R. Gomis, S. Andersen, and P. Arner, “The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes,” New England Journal of Medicine, vol. 345, no. 12, pp. 870–878, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. C. E. Mogensen, C. K. Christensen, and E. Vittinghus, “The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy,” Diabetes, vol. 32, no. 2, pp. 64–78, 1983. View at Scopus
  6. T. W. C. Tervaert, A. L. Mooyaart, K. Amann et al., “Pathologic classification of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 21, no. 4, pp. 556–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Gaede, P. Vedel, H. H. Parving, and O. Pedersen, “Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study,” Lancet, vol. 353, no. 9153, pp. 617–622, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Gorman, E. Sochett, and D. Daneman, “The natural history of microalbuminuria in adolescents with type 1 diabetes,” Journal of Pediatrics, vol. 134, no. 3, pp. 333–337, 1999. View at Scopus
  9. C. E. Mogensen, “Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes,” New England Journal of Medicine, vol. 310, no. 6, pp. 356–360, 1984. View at Scopus
  10. D. T. Eurich, S. R. Majumdar, R. T. Tsuyuki, and J. A. Johnson, “Reduced mortality associated with the use of ACE inhibitors in patients with type 2 diabetes,” Diabetes Care, vol. 27, no. 6, pp. 1330–1334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. H. H. Parving, N. Chaturvedi, G. Viberti, and C. E. Mogensen, “Does microalbuminuria predict diabetic nephropathy?” Diabetes Care, vol. 25, no. 2, pp. 406–407, 2002. View at Scopus
  12. M. L. Caramori, P. Fioretto, and M. Mauer, “The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient?” Diabetes, vol. 49, no. 9, pp. 1399–1408, 2000. View at Scopus
  13. E. de Hoffmann and V. Stroobant, Mass Spectrometry. Principle and Application, John Wiley & Sons, Chichester, UK, 3rd edition, 2007.
  14. J. H. Gross, Mass Spectrometry. A Textbook, Springer, Berlin, Germany, 2004.
  15. M. Hamdan and P. G. Righetti, Proteomics Today. Protein Assessment and Biomarkers Using Mass Spectrometry, 2D Electrophoresis, and Microarray Technology, John Wiley & Sons, Hoboken, NJ, USA, 2005.
  16. A. Lapolla, D. Fedele, R. Aronica et al., “A highly specific method for the characterization of glycation and glyco-oxidation products of globins,” Rapid Communications in Mass Spectrometry, vol. 11, no. 6, pp. 613–617, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. H. H. Otu, H. Can, D. Spentzos et al., “Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy,” Diabetes Care, vol. 30, no. 3, pp. 638–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Dihazi, G. A. Müller, S. Lindner et al., “Characterization of diabetic nephropathy by urinary proteomic analysis: identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients,” Clinical Chemistry, vol. 53, no. 9, pp. 1636–1645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. P. V. Rao, X. Lu, M. Standley et al., “Proteomic identification of urinary biomarkers of diabetic nephropathy,” Diabetes Care, vol. 30, no. 3, pp. 629–637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Riaz, S. S. Alam, S. K. Srai, V. Skinner, A. Riaz, and M. W. Akhtar, “Proteomic identification of human urinary biomarkers in diabetes mellitus type 2,” Diabetes Technology and Therapeutics, vol. 12, no. 12, pp. 979–988, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. C. Tyan, H. R. Guo, C. Y. Liu, and P. C. Liao, “Proteomic profiling of human urinary proteome using nano-high performance liquid chromatography/electrospray ionization tandem mass spectrometry,” Analytica Chimica Acta, vol. 579, no. 2, pp. 158–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Mischak, T. Kaiser, M. Walden et al., “Proteomic analysis for the assessment of diabetic renal damage in humans,” Clinical Science, vol. 107, no. 5, pp. 485–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Meier, T. Kaiser, A. Herrmann et al., “Identification of urinary protein pattern in Type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis,” Journal of Diabetes and Its Complications, vol. 19, no. 4, pp. 223–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Rossing, H. Mischak, H. H. Parving et al., “Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns,” Kidney International, vol. 68, no. 1, pp. 193–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Rossing, H. Mischak, M. Dakna et al., “Urinary proteomics in diabetes and CKD,” Journal of the American Society of Nephrology, vol. 19, no. 7, pp. 1283–1290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Mischak and J. P. Schanstra, “CE-MS in biomarker discovery, validation, and clinical application,” Proteomics, vol. 5, no. 1-2, pp. 9–23, 2011.
  27. A. Alkhalaff, P. Zürbig, S. J. L. Bakker et al., “Multicentric validation of proteomic biomarkers in urine specific for diabetic Nephropathy,” PLoS ONE, vol. 5, no. 10, Article ID e13421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. D. M. Maahs, J. Siwy, À. Argilés et al., “Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology,” PLoS ONE, vol. 5, no. 9, Article ID e13051, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Jiang, G. Guan, R. Zhang et al., “Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy,” Diabetes/Metabolism Research and Reviews, vol. 25, no. 3, pp. 232–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Kumar, N. Rao Venkata Uppuluri, K. Babu et al., “Proteomics of renal disorders: urinary proteome analysis by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry,” Current Science, vol. 82, no. 6, pp. 655–663, 2002. View at Scopus
  31. A. Lapolla, R. Seraglia, L. Molin et al., “Low molecular weight proteins in urines from healthy subjects as well as diabetic, nephropathic and diabetic-nephropathic patients: a MALDI study,” Journal of Mass Spectrometry, vol. 44, no. 3, pp. 419–425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Brickmann, H. Notbohm, and P. K. Müller, Eds., Collagen: Primer in Structure, Processing and Assembly, Topics in Current Chemistry, Springer, Berlin, Germany, 247 edition, 2005.
  33. A. Lapolla, L. Molin, A. Sechi et al., “A further investigation on a MALDI-based method for evaluation ofmarkers of renal damage,” Journal of Mass Spectrometry, vol. 44, no. 12, pp. 1754–1760, 2009. View at Publisher · View at Google Scholar · View at Scopus