About this Journal Submit a Manuscript Table of Contents
ISRN Forestry
Volume 2013 (2013), Article ID 524679, 7 pages
Research Article

Decomposition and Nutrient Release Dynamics of Ficus benghalensis L. Litter in Traditional Agroforestry Systems of Karnataka, Southern India

1Tree Improvement and Propagation Division, Institute of Wood Science and Technology, Malleswaram, Bangalore, Karnataka 560003, India
2Department of Environmental Science, College of Agriculture, University of Agricultural Sciences, PB No. 329, Raichur, Karnataka 584102, India
3Azim Premji University, Bangalore, Karnataka 560100, India

Received 19 November 2012; Accepted 27 January 2013

Academic Editors: P. Robakowski and S. F. Shamoun

Copyright © 2013 B. Dhanya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Dhanya, S. Viswanath, S. Purushothaman, and B. Suneeta, “Ficus trees as components of rainfed agrarian systems in Mandya district of Karnataka,” My Forest, vol. 46, no. 2, pp. 161–165, 2010.
  2. S. R. Isaac and M. A. Nair, “Decomposition of wild jack (Artocarpus hirsutus Lamk.) leaf litter under sub canopy and open conditions,” Journal of Tropical Agriculture, vol. 42, no. 1-2, pp. 29–32, 2004.
  3. V. Meentemeyer and B. Berg, “Regional variation in rate of mass loss of Pinous sylvestris needle litter in Swedish pine forest as influenced by climate and litter quality,” Canadian Journal of Forest Research, vol. 1, pp. 167–180, 1986.
  4. V. P. Upadhyay and J. S. Singh, “Patterns of nutrient immobilization and release in decomposing forest litter in Central Himalaya, India,” Journal of Ecology, vol. 77, no. 1, pp. 147–161, 1989. View at Scopus
  5. B. Dhanya, Integrated study of a Ficus based traditional agroforestry system in Mandya district, Karnataka [Ph.D. thesis], Forest Research Institute Deemed University, Dehradun, India, 2011.
  6. J. M. Anderson and J. S. Ingram, Tropical Soil Biology and Fertility: A Handbook of Methods, CAB International, Wallingford, UK, 1993.
  7. B. A. Jama and P. K. R. Nair, “Decomposition- and nitrogen-mineralization patterns of Leucaena leucocephala and Cassia siamea mulch under tropical semiarid conditions in Kenya,” Plant and Soil, vol. 179, no. 2, pp. 275–285, 1996. View at Scopus
  8. M. L. Jackson, Soil Chemical Analysis, Prentice Hall of India, New Delhi, India, 1973.
  9. A. Walkley and C. A. Black, “An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method,” Soil Science, vol. 37, pp. 29–39, 1934.
  10. R. M. Rowell, R. Pettersen, J. S. Han, J. Rowell, and M. A. Tshabalala, “Cellwall chemistry,” in Handbook of Wood Chemistry and Wood Composites, R. M. Rowell, Ed., p. 65, CRC & Taylor & Francis, Boca Raton, Fla, USA, 2005.
  11. S. Sadasivam and A. Manickam, Biochemical Methods For Agricultural Sciences, Wiley Eastern Limited and Coimbatore: Tamil Nadu Agricultural University, New Delhi, India, 1992.
  12. R. L. Semwal, R. K. Maikhuri, K. S. Rao, K. K. Sen, and K. G. Saxena, “Leaf litter decomposition and nutrient release patterns of six multipurpose tree species of central Himalaya, India,” Biomass and Bioenergy, vol. 24, no. 1, pp. 3–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. R. Isaac and M. A. Nair, “Litter dynamics of six multipurpose trees in a homegarden in Southern Kerala, India,” Agroforestry Systems, vol. 67, no. 3, pp. 203–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Jamaludheen and B. M. Kumar, “Litter of multipurpose trees in Kerala, India: variations in the amount, quality, decay rates and release of nutrients,” Forest Ecology and Management, vol. 115, no. 1, pp. 1–11, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. D. N. Mugendi and P. K. R. Nair, “Predicting the decomposition patterns of tree biomass in tropical highland microregions of Kenya,” Agroforestry Systems, vol. 35, no. 2, pp. 187–201, 1997. View at Scopus
  16. J. G. Bockheim, E. A. Jepsen, and D. M. Heisey, “Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in northwestern Wisconsin,” Canadian Journal of Forest Research, vol. 21, no. 6, pp. 803–812, 1991. View at Scopus
  17. M. M. Giashuddin, D. P. Garrity, and M. L. Aragon, “Weight loss, nitrogen content changes, and nitrogen release during decomposition of legume tree leaves on and in the soil,” Nitrogen Fixing Tree Research Report II, pp. 43–50, 1993.
  18. L. T. Szott, E. C. M. Fernandes, and P. A. Sanchez, “Soil-plant interactions in agroforestry systems,” Forest Ecology and Management, vol. 45, no. 1–4, pp. 127–152, 1991. View at Scopus
  19. C. A. Palm and P. A. Sanchez, “Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents,” Soil Biology and Biochemistry, vol. 23, no. 1, pp. 83–88, 1991. View at Scopus
  20. G. Tian, B. T. Kang, and L. Brussaard, “Effects of chemical composition on N, Ca, and Mg release during incubation of leaves from selected agroforestry and fallow plant species,” Biogeochemistry, vol. 16, no. 2, pp. 103–119, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Niranjana, Studies on the tree-crop interactions in tea (Camellia sinensis) based shaded perennial agroforestry system in Western Ghats [Ph.D. thesis], Forest Research Institute Deemed University, Dehra Dun, India, 2006.
  22. V. G. Panse and P. V. Sukhatme, Statistical Methods For Agricultural Workers, Indian Council of Agricultural Research, New Delhi, India, 2000.
  23. M. E. Harmon, G. A. Baker, G. Spycher, and S. E. Greene, “Leaf-litter decomposition in the Picea/tsuga forests of Olympic National Park, Washington, U.S.A,” Forest Ecology and Management, vol. 31, no. 1-2, pp. 55–66, 1990. View at Scopus
  24. R. L. Edmonds and T. B. Thomas, “Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old-growth temperate rain forest, Olympic National Park, Washington,” Canadian Journal of Forest Research, vol. 25, no. 7, pp. 1049–1057, 1995. View at Scopus
  25. R. H. Waring and W. H. Schlesinger, Forest Ecosystem: Concepts and Management, Academic Press, New York, NY, USA, 1985.
  26. A. Young, “Agroforestry for Soil Management,” CAB International and International Centre for Research in Agroforestry, 1997.
  27. M. Constantinides and J. H. Fownes, “Nitrogen mineralization from leaves and litter of tropical plants: relationship to nitrogen, lignin and soluble polyphenol concentrations,” Soil Biology and Biochemistry, vol. 26, no. 1, pp. 49–55, 1994. View at Scopus
  28. V. Meentemeyer, “Macroclimate and lignin control of litter decomposition rates,” Ecology, vol. 59, pp. 465–472, 1978.
  29. T. J. Stohlgren, “Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter,” Canadian Journal of Forest Research, vol. 18, no. 9, pp. 1136–1144, 1988. View at Scopus
  30. O. P. Toky and V. Singh, “Litter synamics in short-rotation high density tree plantations in an arid region of India,” Agriculture, Ecosystems and Environment, vol. 45, no. 1-2, pp. 129–145, 1993. View at Scopus
  31. S. Shafique, R. Bajwa, A. Javaid, and S. Shafique, “Biological control of Parthenium IV: suppressive ability of aqueous leaf extracts of some allelopathic trees against germination and early seedling growth of Parthenium hysterophorus L.,” Pakistan Journal of Weed Science Research, vol. 11, no. 1-2, pp. 75–79, 2005.
  32. M. Manikandan and M. Jayakumar, “Herbicidal effect of Ficus bengalensis aqueous extract on Lpomoea pentaphylla,” International Journal of Agriculture, vol. 2, no. 1, pp. 35–38, 2012.
  33. S. Shafique, A. Javaid, R. Bajwa, and S. Shafique, “Effect of aqueous leaf extracts of allelopathic trees on germination and seed-borne mycoflora of wheat,” Pakistan Journal of Botany, vol. 39, no. 7, pp. 2619–2624, 2007.
  34. S, Siddiqui, M. K. Meghvansi et al., “Efficacy of aqueous extracts of five arable trees on the seed germination of Pisum sativum l. Var-VRP-6 and KPM-522,” Botany Research International, vol. 2, no. 1, pp. 30–35, 2009.