About this Journal Submit a Manuscript Table of Contents
ISRN Gastroenterology
Volume 2012 (2012), Article ID 762920, 7 pages
http://dx.doi.org/10.5402/2012/762920
Research Article

Effect of Antioxidant Treatment on Fibrogenesis in Rats with Carbon Tetrachloride-Induced Cirrhosis

1Post-Graduation Medical Sciences Program, Medical School, Federal University of Rio Grande do Sul (UFRGS), 90035-903 Porto Alegre, RS, Brazil
2Laboratory of Molecular Biology of Autoimmune and Infectious Disease, Hospital de Clínicas de Porto Alegre (HCPA), 90035-903 Porto Alegre, RS, Brazil
3Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), 90040-060 Porto Alegre, RS, Brazil
4Physiotherapy Course, Universidade Católica de Pelotas (UCPEL), 96010-000 Pelotas, RS, Brazil
5Post-Graduation Physiology, Federal University of Rio Grande do Sul (UFRGS), 90050-170 Porto Alegre, RS, Brazil
6Academic Course of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
7Post-Graduation Medical Sciences Program, Instituto de Cardiologia do Rio Grande do Sul, 91045-140 Porto Alegre, RS, Brazil
8Laboratory of Molecular Biology of Autoimmune and Infectious Diseases, HCPA, 90035-903 Porto Alegre, RS, Brazil
9Laboratory of Experimental Gastroenterology and Hepatology—Federal University of Rio Grande do Sul (UFRGS), 92425-900 Canoas, RS, Brazil
10Laboratory of Oxidative Stress and Antioxidants—Lutheran University of Brazil (ULBRA), 92425-900 Canoas, RS, Brazil

Received 5 December 2011; Accepted 28 December 2011

Academic Editors: G.-T. Huang and G. D. Mazzolini

Copyright © 2012 Silvia Bona et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Friedman, “Liver fibrosis—from bench to bedside,” Journal of Hepatology, vol. 38, supplement 1, pp. S38–S53, 2003. View at Scopus
  2. M. R. Ebrahimkhani, A. M. Elsharkawy, and D. A. Mann, “Wound healing and local neuroendocrine regulation in the injured liver,” Expert Reviews in Molecular Medicine, vol. 10, p. e11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. L. Fang and W. C. Lin, “Lipid peroxidation products do not activate hepatic stellate cells,” Toxicology, vol. 253, no. 1–3, pp. 36–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Perez Tamayo, “Is cirrhosis of the liver experimentally produced by CCl4 an adequate model of human cirrhosis?” Hepatology, vol. 3, no. 1, pp. 112–120, 1983. View at Scopus
  5. N. C. Henderson and S. J. Forbes, “Hepatic fibrogenesis: from within and outwith,” Toxicology, vol. 254, no. 3, pp. 130–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Bengmark, M. D. Mesa, and A. Gil Hernández, “Plant-derived health—the effects of turmeric and curcuminoids,” Nutricion Hospitalaria, vol. 24, no. 3, pp. 273–281, 2009. View at Scopus
  7. P. M. Amália, M. N. Possa, M. C. Augusto, and L. S. Francisca, “Quercetin prevents oxidative stress in cirrhotic rats,” Digestive Diseases and Sciences, vol. 52, no. 10, pp. 2616–2621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. González-Gallego, S. Sánchez-Campos, and M. J. Tuñón, “Anti-inflammatory properties of dietary flavonoids,” Nutricion Hospitalaria, vol. 22, no. 3, pp. 287–293, 2007.
  9. J. Tieppo, M. J. Cuevas, R. Vercelino, M. J. Tuñón, N. P. Marroni, and J. González-Gallego, “Quercetin administration ameliorates pulmonary complications of cirrhosis in rats,” Journal of Nutrition, vol. 139, no. 7, pp. 1339–1346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Martinez-Florez, J. González-Gallego, J. M. Culebras, and M. J. Tuñón, “Flavonoids: properties and anti-oxidizing action,” Nutrition Hospital, vol. 17, no. 6, pp. 271–278, 2002.
  11. C. Tokyol, S. Yilmaz, A. Kahraman, H. Çakar, and C. Polat, “The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats,” Acta Chirurgica Belgica, vol. 106, no. 1, pp. 68–72, 2006. View at Scopus
  12. J. Abilés, R. Moreno-Torres, G. Moratalla et al., “Effects of supply with glutamine on antioxidant system and lipid peroxidation in patients with parenteral nutrition,” Nutricion Hospitalaria, vol. 23, no. 4, pp. 332–339, 2008. View at Scopus
  13. W. Peres, M. J. Tuón, P. S. Collado, S. Herrmann, N. Marroni, and J. González-Gallego, “The flavonoid quercetin ameliorates liver damage in rats with biliary obstruction,” Journal of Hepatology, vol. 33, no. 5, pp. 742–750, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. R. V. Cremonese, A. A. Pereira-Filho, R. Magalhães et al., “Experimental cirrhosis induced by carbon tetrachloride inhalation: technical modifications and lipoperoxidation effects,” Arquivos de Gastroenterologia, vol. 38, no. 1, pp. 40–47, 2001.
  15. M. Rojkind and E. Gonzalez, “An improved method for determining specific radioactivities of proline 14C and hydroxyproline 14C in collagen and in noncollagenous proteins,” Analytical Biochemistry, vol. 57, no. 1, pp. 1–7, 1974. View at Scopus
  16. J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology, vol. 52, pp. 302–310, 1978. View at Publisher · View at Google Scholar · View at Scopus
  17. H. P. Misra and I. Fridovich, “The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase,” Journal of Biological Chemistry, vol. 247, no. 10, pp. 3170–3175, 1972. View at Scopus
  18. A. Boveris and B. Chance, “The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen,” Biochemical Journal, vol. 134, no. 3, pp. 707–716, 1973. View at Scopus
  19. L. Flohe and W. A. Gunzler, “Assays of glutathione peroxidase,” Methods in Enzymology, vol. 105, pp. 114–121, 1984. View at Scopus
  20. A. Kolberg, T. G. Rosa, M. T. Puhl et al., “Low expression of MRP1/GS-X pump ATPase in lymphocytes of Walker 256 tumour-bearing rats is associated with cyclopentenone prostaglandin accumulation and cancer immunodeficiency,” Cell Biochemistry and Function, vol. 24, no. 1, pp. 23–39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Pawlikowska-Pawlega, W. Ignacy Gruszecki, L. Misiak et al., “Modification of membranes by quercetin, a naturally occurring flavonoid, via its incorporation in the polar head group,” Biochimica et Biophysica Acta, vol. 1768, no. 9, pp. 2195–2204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. G. Rajesh and M. S. Latha, “Preliminary evaluation of the antihepatotoxic activity of Kamilari, a polyherbal formulation,” Journal of Ethnopharmacology, vol. 91, no. 1, pp. 99–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. L. P. Yuan, F. H. Chen, L. Ling et al., “Protective effects of total flavonoids of Bidens bipinnata L. against carbon tetrachloride-induced liver fibrosis in rats,” Journal of Pharmacy and Pharmacology, vol. 60, no. 10, pp. 1393–1402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. Tsai, J. Y. Liu, T. T. Wu et al., “Effects of silymarin on the resolution of liver fibrosis induced by carbon tetrachloride in rats,” Journal of Viral Hepatitis, vol. 15, no. 7, pp. 508–514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Yoshiji, S. Kuriyama, J. Yoshii et al., “Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse,” Hepatology, vol. 36, no. 4, pp. 850–860, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Emonard and J. A. Grimaud, “Matrix metalloproteinases. A review,” Cellular and Molecular Biology, vol. 36, no. 2, pp. 131–153, 1990. View at Scopus
  28. Y. Iimuro and D. A. Brenner, “Matrix metalloproteinase gene delivery for liver fibrosis,” Pharmaceutical Research, vol. 25, no. 2, pp. 249–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. M. Préaux, A. Mallat, J. T. Van Nhieu, M. P. D'Ortho, R. M. Hembry, and P. Mavier, “Matrix metalloproteinase-2 activation in human hepatic fibrosis regulation by cell-matrix interactions,” Hepatology, vol. 30, no. 4, pp. 944–950, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Pilátová, V. Stupáková, L. Varinská et al., “Effect of selected flavones on cancer and endothelial cells,” General Physiology and Biophysics, vol. 29, no. 2, pp. 134–143, 2010. View at Publisher · View at Google Scholar
  31. G. Drewa, E. Krzyzyńska-Malinowska, A. Woźniak et al., “Activity of superoxide dismutase and catalase and the level of lipid peroxidation products reactive with TBA in patients with psoriasis,” Medical Science Monitor, vol. 8, no. 8, pp. BR338–BR343, 2002. View at Scopus
  32. D. P. Da Rosa, S. Bona, D. Simonetto, C. Zettler, C. A. Marroni, and N. P. Marroni, “Melatonin protects the liver and erythrocytes against oxidative stress in cirrhotic rats,” Arquivos de Gastroenterologia, vol. 47, no. 1, pp. 72–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Q. Schafer and G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1191–1212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Seufi, S. S. Ibrahim, T. K. Elmaghraby, and E. E. Hafez, “Preventive effect of the flavonoid,quercetin, on hepatic cancer in rats via oxidant/antioxidant activity: molecular and histological evidences,” Journal of Experimental and Clinical Cancer Research, vol. 28, no. 1, article no. 80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Ø. Moskaug, H. Carlsen, M. Myhrstad, and R. Blomhoff, “Molecular imaging of the biological effects of quercetin and quercetin-rich foods,” Mechanisms of Ageing and Development, vol. 125, no. 4, pp. 315–324, 2004. View at Publisher · View at Google Scholar · View at Scopus