About this Journal Submit a Manuscript Table of Contents
ISRN Gastroenterology
Volume 2013 (2013), Article ID 630159, 17 pages
http://dx.doi.org/10.1155/2013/630159
Review Article

The Gut’s Little Brain in Control of Intestinal Immunity

Tytgat Institute for Gastrointestinal and Liver Research, Department of Gastroenterology, Academic Medical Centre, Meibergdreef 69, 1105 NH Amsterdam, The Netherlands

Received 24 December 2012; Accepted 12 January 2013

Academic Editors: M. Candelli, N. Figura, M. Kairaluoma, H. Kuwano, S. C. Shih, and H. Shimoda

Copyright © 2013 Wouter J. de Jonge. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Dhawan, C. Cailotto, L. F. Harthoorn, and W. J. de Jonge, “Cholinergic signalling in gut immunity,” Life Sciences, vol. 91, no. 21-22, pp. 1038–1042, 2012. View at Publisher · View at Google Scholar
  2. T. Fujii, Y. Takada-Takatori, and K. Kawashima, “Regulatory mechanisms of acetylcholine synthesis and release by T cells,” Life Sciences, vol. 91, no. 21-22, pp. 981–985, 2012. View at Publisher · View at Google Scholar
  3. M. Rosas-Ballina, P. S. Olofsson, M. Ochani, et al., “Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit,” Science, vol. 334, pp. 98–101, 2011.
  4. I. J. Elenkov and G. P. Chrousos, “Stress system—organization, physiology and immunoregulation,” NeuroImmunoModulation, vol. 13, no. 5-6, pp. 257–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. “The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system,” Pharmacological Reviews, vol. 52, pp. 595–638, 2000.
  6. B. L. Bonaz and C. N. Bernstein, “Brain-gut interactions in inflammatory bowel diseases,” Gastroenterology, vol. 144, no. 1, pp. 36–49, 2013. View at Publisher · View at Google Scholar
  7. J. B. Furness and M. Costa, “Types of nerves in the enteric nervous system,” Neuroscience, vol. 5, no. 1, pp. 1–20, 1980. View at Publisher · View at Google Scholar · View at Scopus
  8. D. L. Bellinger, D. Lorton, S. Y. Felten, and D. L. Felten, “Innervation of lymphoid organs and implications in development, aging, and autoimmunity,” International Journal of Immunopharmacology, vol. 14, no. 3, pp. 329–344, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. H. R. Berthoud and W. L. Neuhuber, “Functional and chemical anatomy of the afferent vagal system,” Autonomic Neuroscience, vol. 85, no. 1–3, pp. 1–17, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zheng and H. R. Berthoud, “Functional vagal input to gastric myenteric plexus as assessed by vagal stimulation-induced Fos expression,” American Journal of Physiology, vol. 279, no. 1, pp. G73–G81, 2000. View at Scopus
  11. L. Benthem, T. O. Mundinger, and G. J. Taborsky Jr., “Parasympathetic inhibition of sympathetic neural activity to the pancreas,” American Journal of Physiology, vol. 280, no. 2, pp. E378–E381, 2001. View at Scopus
  12. C. T. Taylor and S. J. Keely, “The autonomic nervous system and inflammatory bowel disease,” Autonomic Neuroscience, vol. 133, no. 1, pp. 104–114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. T. Taylor and S. J. Keely, “The autonomic nervous system and inflammatory bowel disease,” Autonomic Neuroscience, vol. 133, no. 1, pp. 104–114, 2007.
  14. J. B. Furness, “Types of neurons in the enteric nervous system,” Journal of the Autonomic Nervous System, vol. 81, pp. 87–96, 2000.
  15. S. Livnat, S. Y. Felten, S. L. Carlson, D. L. Bellinger, and D. L. Felten, “Involvement of peripheral and central catecholamine systems in neural-immune interactions,” Journal of Neuroimmunology, vol. 10, no. 1, pp. 5–30, 1985. View at Scopus
  16. D. L. Felten, S. Y. Felten, S. L. Carlson, J. A. Olschowka, and S. Livnat, “Noradrenergic and peptidergic innervation of lymphoid tissue,” Journal of Immunology, vol. 135, no. 2, pp. 755s–765s, 1985. View at Scopus
  17. K. S. Madden, J. A. Moynihan, G. J. Brenner, S. Y. Felten, D. L. Felten, and S. Livnat, “Sympathetic nervous system modulation of the immune system. III. Alterations in T and B cell proliferation and differentiation in vitro following chemical sympathectomy,” Journal of Neuroimmunology, vol. 49, no. 1-2, pp. 77–87, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Y. Felten and J. Olschowka, “Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase, (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp,” Journal of Neuroscience Research, vol. 18, no. 1, pp. 37–48, 1987.
  19. A. Salonen, W. M. de Vos, and A. Palva, “Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives,” Microbiology, vol. 156, pp. 3205–3215, 2010.
  20. E. Li, C. M. Hamm, A. S. Gulati, et al., “Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition,” PLoS One, vol. 7, article e26284, 2012.
  21. P. Bercik, S. M. Collins, and E. F. Verdu, “Microbes and the gut-brain axis,” Neurogastroenterology & Motility, vol. 24, pp. 405–413, 2012.
  22. S. M. Collins, E. Denou, E. F. Verdu, and P. Bercik, “The putative role of the intestinal microbiota in the irritable bowel syndrome,” Digestive and Liver Disease, vol. 41, no. 12, pp. 850–853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. E. Ghia, A. J. Park, P. Blennerhassett, W. I. Khan, and S. M. Collins, “Adoptive transfer of macrophage from mice with depression-like behavior enhances susceptibility to colitis,” Inflammatory Bowel Diseases, vol. 17, no. 7, pp. 1474–1489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Collins, M. Surette, and P. Bercik, “The interplay between the intestinal microbiota and the brain,” Nature Reviews Microbiology, vol. 10, pp. 735–742, 2012.
  25. P. Bercik, E. Denou, J. Collins, et al., “The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice,” Gastroenterology, vol. 141, pp. 599–609, 2011.
  26. A. P. Kohm and V. M. Sanders, “Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo,” Pharmacological Reviews, vol. 53, no. 4, pp. 487–525, 2001.
  27. R. M. Williams, H. R. Berthoud, and R. H. Stead, “Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa,” NeuroImmunoModulation, vol. 4, no. 5-6, pp. 266–270, 1998. View at Scopus
  28. R. H. Stead, E. C. Colley, B. Wang, et al., “Vagal influences over mast cells,” Autonomic Neuroscience, vol. 125, no. 1-2, pp. 53–61, 2006. View at Publisher · View at Google Scholar
  29. R. Giorgio and G. Barbara, “Is irritable bowel syndrome an inflammatory disorder?” Current Gastroenterology Reports, vol. 10, pp. 385–390, 2008.
  30. G. J. M. Maestroni, “Sympathetic nervous system influence on the innate immune response,” Annals of the New York Academy of Sciences, vol. 1069, pp. 195–207, 2006.
  31. G. J. M. Maestroni, “Sympathetic nervous system influence on the innate immune response,” Annals of the New York Academy of Sciences, vol. 1069, pp. 195–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. I. J. Elenkov, R. L. Wilder, G. P. Chrousos, and E. S. Vizi, “The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system,” Pharmacological Reviews, vol. 52, no. 4, pp. 595–638, 2000.
  33. V. M. Sanders and R. H. Straub, “Norepinephrine, the β-adrenergic receptor, and immunity,” Brain, Behavior, and Immunity, vol. 16, no. 4, pp. 290–332, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Salamone, G. Lombardi, S. Gori, et al., “Cholinergic modulation of dendritic cell function,” Journal of Neuroimmunology, vol. 236, pp. 47–56, 2011.
  35. Y. Yanagawa, M. Matsumoto, and H. Togashi, “Enhanced dendritic cell antigen uptake via α2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline,” Journal of Immunology, vol. 185, no. 10, pp. 5762–5768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Lorton, D. Hewitt, D. L. Bellinger, S. Y. Felten, and D. L. Felten, “Noradrenergic reinnervation of the rat spleen following chemical sympathectomy with 6-hydroxydopamine: pattern and time course of reinnervation,” Brain, Behavior, and Immunity, vol. 4, no. 3, pp. 198–222, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Giacobini, “Neuronal control of neurotransmitters biosynthesis during development,” Journal of Neuroscience Research, vol. 1, no. 3-4, pp. 315–331, 1975. View at Scopus
  38. F. Magro, M. A. Vieira-Coelho, S. Fraga, et al., “Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease,” Digestive Diseases and Sciences, vol. 47, pp. 216–224, 2002.
  39. D. M. McCafferty, J. L. Wallace, and K. A. Sharkey, “Effects of chemical sympathectomy and sensory nerve ablation on experimental colitis in the rat,” American Journal of Physiology, vol. 272, no. 2, pp. G272–G280, 1997. View at Scopus
  40. K. J. Tracey, “Reflex control of immunity,” Nature Reviews Immunology, vol. 9, pp. 418–428, 2009.
  41. M. Rosas-Ballina and K. J. Tracey, “The neurology of the immune system: neural reflexes regulate immunity,” Neuron, vol. 64, no. 1, pp. 28–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Matteoli and G. E. Boeckxstaens, “The vagal innervation of the gut and immune homeostasis,” Gut, 2012. View at Publisher · View at Google Scholar
  43. H. Wang, M. Yu, M. Ochani, et al., “Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation,” Nature, vol. 421, pp. 384–388, 2002.
  44. G. Vida, G. Pena, E. A. Deitch, and L. Ulloa, “α7-cholinergic receptor mediates vagal induction of splenic norepinephrine,” Journal of Immunology, vol. 186, no. 7, pp. 4340–4346, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. P. S. Olofsson, M. Rosas-Ballina, Y. A. Levine, and K. J. Tracey, “Rethinking inflammation: neural circuits in the regulation of immunity,” Immunological Reviews, vol. 248, no. 1, pp. 188–204, 2012.
  46. C. Cailotto, L. M. Costes, J. van der Vliet, et al., “Neuroanatomical evidence demonstrating the existence of the vagal anti-inflammatory reflex in the intestine,” Neurogastroenterology & Motility, vol. 24, article e93, pp. 191–200, 2011.
  47. F. The, C. Cailotto, J. van der Vliet, et al., “Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus,” British Journal of Pharmacology, vol. 163, pp. 1007–1016, 2011.
  48. W. J. de Jonge, E. P. van der Zanden, F. O. The, et al., “Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway,” Nature Immunology, vol. 6, pp. 844–851, 2005.
  49. J. E. Ghia, P. Blennerhassett, H. Kumar-Ondiveeran, E. F. Verdu, and S. M. Collins, “The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model,” Gastroenterology, vol. 131, no. 4, pp. 1122–1130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. E. Ghia, P. Blennerhassett, and S. M. Collins, “Vagus nerve integrity and experimental colitis,” American Journal of Physiology, vol. 293, no. 3, pp. G560–G567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. A. Snoek, M. I. Verstege, E. P. van der Zanden, et al., “Selective α7 nicotinic acetylcholine receptor agonists worsen disease in experimental colitis,” British Journal of Pharmacology, vol. 160, pp. 322–333, 2010.
  52. N. Moser, N. Mechawar, I. Jones, et al., “Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures,” Journal of Neurochemistry, vol. 102, pp. 479–492, 2007.
  53. S. A. Grando, K. Kawashima, and I. Wessler, “Introduction: the non-neuronal cholinergic system in humans,” Life Sciences, vol. 72, no. 18-19, pp. 2009–2012, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Kawashima, T. Fujii, Y. Watanabe, and H. Misawa, “Acetylcholine synthesis and muscarinic receptor subtype mRNA expression in T-lymphocytes,” Life Sciences, vol. 62, no. 17-18, pp. 1701–1705, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Matteoli and G. E. Boeckxstaens, “The vagal innervation of the gut and immune homeostasis,” Gut, 2012.
  56. E. P. van der Zanden, S. A. Snoek, S. E. Heinsbroek, et al., “Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor α4β2,” Gastroenterology, vol. 137, pp. 1029.e4–1039.e4, 2009.
  57. R. M. Drenan and H. A. Lester, “Insights into the neurobiology of the nicotinic cholinergic system and nicotine addiction from mice expressing nicotinic receptors harboring gain-of-function mutations,” Pharmacological Reviews, vol. 64, pp. 869–879, 2012.
  58. P. S. Olofsson, M. Rosas-Ballina, Y. A. Levine, and K. J. Tracey, “Rethinking inflammation: neural circuits in the regulation of immunity,” Immunological Reviews, vol. 248, pp. 188–204, 2012.
  59. H. Yoshikawa, M. Kurokawa, N. Ozaki, et al., “Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7,” Clinical & Experimental Immunology, vol. 146, pp. 116–123, 2006.
  60. G. Peña, B. Cai, J. Liu, et al., “Unphosphorylated STAT3 modulates alpha7 nicotinic receptor signaling and cytokine production in sepsis,” European Journal of Immunology, vol. 40, pp. 2580–2589, 2010.
  61. E. P. Van Der Zanden, G. E. Boeckxstaens, and W. J. De Jonge, “The vagus nerve as a modulator of intestinal inflammation,” Neurogastroenterology and Motility, vol. 21, no. 1, pp. 6–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Kox, J. C. Pompe, P. Pickkers, C. W. Hoedemaekers, A. B. Van Vugt, and J. G. Van Der Hoeven, “Increased vagal tone accounts for the observed immune paralysis in patients with traumatic brain injury,” Neurology, vol. 70, no. 6, pp. 480–485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Klapproth, T. Reinheimer, J. Metzen et al., “Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 355, no. 4, pp. 515–523, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Rinner, K. Kawashima, and K. Schauenstein, “Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation,” Journal of Neuroimmunology, vol. 81, no. 1-2, pp. 31–37, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. I. Shaked, A. Meerson, Y. Wolf et al., “MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase,” Immunity, vol. 31, no. 6, pp. 965–973, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. I. Wessler, H. Kilbinger, F. Bittinger, R. Unger, and C. J. Kirkpatrick, “The non-neuronal cholinergic system in humans: expression, function and pathophysiology,” Life Sciences, vol. 72, no. 18-19, pp. 2055–2061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Peña, B. Cai, L. Ramos, G. Vida, E. A. Deitch, and L. Ulloa, “Cholinergic regulatory lymphocytes re-establish neuromodulation of innate immune responses in sepsis,” Journal of Immunology, vol. 187, no. 2, pp. 718–725, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. J. E. Ghia, P. Blennerhassett, and S. M. Collins, “Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression,” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2209–2218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. F. O. The, G. E. Boeckxstaens, S. A. Snoek, et al., “Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice,” Gastroenterology, vol. 133, pp. 1219–1228, 2007.
  70. M. D. Luyer, J. W. M. Greve, M. Hadfoune, J. A. Jacobs, C. H. Dejong, and W. A. Buurman, “Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve,” Journal of Experimental Medicine, vol. 202, no. 8, pp. 1023–1029, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. G. J. M. Maestroni, “Sympathetic nervous system influence on the innate immune response,” Annals of the New York Academy of Sciences, vol. 1069, pp. 195–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. J. A. Johnston, D. D. Taub, A. R. Lloyd et al., “lymphocyte chemotaxis and adhesion induced by vasoactive intestinal peptide,” The Journal of Immunology, vol. 153, no. 4, pp. 1762–1768, 1994.
  73. A. Spiegel, S. Shivtiel, A. Kalinkovich et al., “Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling,” Nature Immunology, vol. 8, no. 10, pp. 1123–1131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Gonzalez-Rey and M. Delgado, “Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide,” Gastroenterology, vol. 131, no. 6, pp. 1799–1811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Manicassamy and B. Pulendran, “Dendritic cell control of tolerogenic responses,” Immunological Reviews, vol. 241, no. 1, pp. 206–227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Mazelin, V. Theodorou, J. More, X. Emonds-Alt, J. Fioramonti, and L. Bueno, “Comparative effects of nonpeptide tachykinin receptor antagonists on experimental gut inflammation in rats and guinea-pigs,” Life Sciences, vol. 63, no. 4, pp. 293–304, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Alvaro and R. Di Fabio, “Neurokinin 1 receptor antagonists—current prospects,” Current Opinion in Drug Discovery and Development, vol. 10, no. 5, pp. 613–621, 2007. View at Scopus
  78. P. Naveilhan, H. Hassani, G. Lucas et al., “Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor,” Nature, vol. 409, no. 6819, pp. 513–517, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Wheway, C. R. Mackay, R. A. Newton, et al., “A fundamental bimodal role for neuropeptide Y1 receptor in the immune system,” The Journal of Experimental Medicine, vol. 202, pp. 1527–1538, 2005.
  80. Y. Shimizu, H. Matsuyama, T. Shiina, T. Takewaki, and J. B. Furness, “Tachykinins and their functions in the gastrointestinal tract,” Cellular and Molecular Life Sciences, vol. 65, no. 2, pp. 295–311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. W. K. Hon and C. Pothoulakis, “Immunomodulatory properties of substance P: the gastrointestinal system as a model,” Annals of the New York Academy of Sciences, vol. 1088, pp. 23–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. K. J. Gross and C. Pothoulakis, “Role of neuropeptides in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 13, no. 7, pp. 918–932, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. T. M. O'Connor, J. O'Connell, D. I. O'Brien, T. Goode, C. P. Bredin, and F. Shanahan, “The role of substance P in inflammatory disease,” Journal of Cellular Physiology, vol. 201, pp. 167–180, 2004.
  84. I. Castagliuolo, A. C. Keates, B. Qiu et al., “Increased substance P responses in dorsal root ganglia and intestinal macrophages during Clostridium difficile toxin A enteritis in rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4788–4793, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Renzi, B. Pellegrini, F. Tonelli, C. Surrenti, and A. Calabro, “Substance P (neurokinin-1) and neurokinin A (neurokinin-2) receptor gene and protein expression in the healthy and inflamed human intestine,” American Journal of Pathology, vol. 157, no. 5, pp. 1511–1522, 2000. View at Scopus
  86. A. F. Stucchi, S. Shofer, S. Leeman, et al., “NK-1 antagonist reduces colonic inflammation and oxidative stress in dextran sulfate-induced colitis in rats,” American Journal of Physiology, vol. 279, pp. G1298–G1306, 2000.
  87. M. Costa and J. B. Furness, “The origins, pathways and terminations of neurons with VIP-like immunoreactivity in the guinea-pig small intestine,” Neuroscience, vol. 8, no. 4, pp. 665–676, 1983. View at Publisher · View at Google Scholar · View at Scopus
  88. D. L. Bellinger, D. Lorton, L. Horn, S. Brouxhon, S. Y. Felten, and D. L. Felten, “Vasoactive intestinal polypeptide (VIP) innervation of rat spleen, thymus, and lymph nodes,” Peptides, vol. 18, no. 8, pp. 1139–1149, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Delgado, C. Martinez, J. Leceta, and R. P. Gomariz, “Vasoactive intestinal peptide in thymus: synthesis, receptors and biological actions,” NeuroImmunoModulation, vol. 6, no. 1-2, pp. 97–107, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Yukawa, N. Oshitani, H. Yamagami, K. Watanabe, K. Higuchi, and T. Arakawa, “Differential expression of vasoactive intestinal peptide receptor 1 expression in inflammatory bowel disease,” International Journal of Molecular Medicine, vol. 20, no. 2, pp. 161–167, 2007.
  91. S. T. Dorsam, E. Vomhof-DeKrey, R. J. Hermann et al., “Identification of the early VIP-regulated transcriptome and its associated, interactome in resting and activated murine CD4 T cells,” Molecular Immunology, vol. 47, no. 6, pp. 1181–1194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. J. C. Massacand, P. Kaiser, B. Ernst et al., “Intestinal bacteria condition dendritic cells to promote IgA production,” PLoS ONE, vol. 3, no. 7, article e2588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. R. P. Gomariz, “Time-course expression of Toll-like receptors 2 and 4 in inflammatory bowel disease and homeostatic effect of VIP,” Journal of Leukocyte Biology, vol. 78, pp. 491–502, 2005.
  94. M. G. Toscano, M. Delgado, W. Kong, F. Martin, M. Skarica, and D. Ganea, “Dendritic cells transduced with lentiviral vectors expressing vip differentiate into vip-secreting tolerogenic-like DCs,” Molecular Therapy, vol. 18, no. 5, pp. 1035–1045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. E. Gonzalez-Rey, N. Varela, A. Chorny, and M. Delgado, “Therapeutical approaches of vasoactive intestinal peptide as a pleiotropic immunomodulator,” Current Pharmaceutical Design, vol. 13, no. 11, pp. 1113–1139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Delgado and D. Ganea, “Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions,” Amino Acids, 2011. View at Publisher · View at Google Scholar
  97. C. Surrenti, D. Renzi, M. R. Garcea, E. Surrenti, and G. Salvadori, “Colonic vasoactive intestinal polypeptide in ulcerative colitis,” Journal of Physiology Paris, vol. 87, no. 5, pp. 307–311, 1993. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Lin, D. Boey, and H. Herzog, “NPY and Y receptors: lessons from transgenic and knockout models,” Neuropeptides, vol. 38, no. 4, pp. 189–200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. A. G. Blomqvist and H. Herzog, “Y-receptor subtypes—how many more?” Trends in Neurosciences, vol. 20, no. 7, pp. 294–298, 1997. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Bedoui, N. Kawamura, R. H. Straub, R. Pabst, T. Yamamura, and S. von Hörsten, “Relevance of neuropeptide Y for the neuroimmune crosstalk,” Journal of Neuroimmunology, vol. 134, pp. 1–11, 2003.
  101. J. Holler, A. Zakrzewicz, A. Kaufmann, et al., “Neuropeptide Y is expressed by rat mononuclear blood leukocytes and strongly down-regulated during inflammation,” The Journal of Immunology, vol. 181, no. 10, pp. 6906–6912, 2008.
  102. B. Chandrasekharan, V. Bala, V. L. Kolachala et al., “Targeted deletion of neuropeptide Y (NPY) modulates experimental colitis,” PLoS ONE, vol. 3, no. 10, article e3304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. H. Hassani, G. Lucas, B. Rozell, and P. Ernfors, “Attenuation of acute experimental colitis by preventing NPY Y1 receptor signaling,” American Journal of Physiology, vol. 288, no. 3, pp. G550–G556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. A. C. B. Meedeniya, A. C. Schloithe, J. Toouli, and G. T. P. Saccone, “Characterization of the intrinsic and extrinsic innervation of the gall bladder epithelium in the Australian Brush-tailed possum (Trichosurus vulpecula),” Neurogastroenterology and Motility, vol. 15, no. 4, pp. 383–392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. W. J. De Jonge and D. R. Greaves, “Immune modulation in gastrointestinal disorders: new opportunities for therapeutic peptides?” Expert Review of Gastroenterology and Hepatology, vol. 2, pp. 741–748, 2008.
  106. G. E. Boeckxstaens and W. J. De Jonge, “Neuroimmune mechanisms in postoperative ileus,” Gut, vol. 58, no. 9, pp. 1300–1311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Wang, H. Liao, M. Ochani, et al., “Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis,” Nature Medicine, vol. 10, no. 11, pp. 1216–1221, 2004.
  108. L. Ulloa, “The vagus nerve and the nicotinic anti-inflammatory pathway,” Nature Reviews Drug Discovery, vol. 4, no. 8, pp. 673–684, 2005. View at Publisher · View at Google Scholar · View at Scopus