About this Journal Submit a Manuscript Table of Contents
ISRN Geometry
Volume 2011 (2011), Article ID 161523, 9 pages
http://dx.doi.org/10.5402/2011/161523
Research Article

Some Results on Lorentzian Para-Sasakian Manifolds

Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka, Shimoga 577 451, India

Received 3 June 2011; Accepted 3 July 2011

Academic Editor: M. Dunajski

Copyright © 2011 Venkatesha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Matsumoto, “On Lorentzian paracontact manifolds,” Bulletin of the Yamagata University. Natural Science, vol. 12, no. 2, pp. 151–156, 1989. View at Zentralblatt MATH
  2. I. Mihai and R. Roşca, “On Lorentzian P-Sasakian manifolds,” in Classical Analysis (Kazimierz Dolny, 1991), pp. 155–169, World Scientific, River Edge, NJ, USA, 1992.
  3. K. Matsumoto and I. Mihai, “On a certain transformation in a Lorentzian para-Sasakian manifold,” Tensor, vol. 47, no. 2, pp. 189–197, 1988. View at Zentralblatt MATH
  4. I. Mihai, A. A. Shaikh, and U. C. De, “On Lorentzian para-Sasakian manifolds,” Rendiconti del Seminario Matematico di Messina, no. 3, pp. 149–158, 1999.
  5. Venkatesha and C. S. Bagewadi, “On concircular ϕ-recurrent LP-Sasakian manifolds,” Differential Geometry—Dynamical Systems, vol. 10, pp. 312–319, 2008.
  6. G. P. Pokhariyal and R. S. Mishra, “Curvature tensors' and their relativistics significance,” Yokohama Mathematical Journal, vol. 18, pp. 105–108, 1970. View at Zentralblatt MATH
  7. G. P. Pokhariyal, “Study of a new curvature tensor in a Sasakian manifold,” Tensor, vol. 36, no. 2, pp. 222–226, 1982. View at Zentralblatt MATH
  8. K. Matsumoto, S. Ianuş, and I. Mihai, “On P-Sasakian manifolds which admit certain tensor fields,” Publicationes Mathematicae Debrecen, vol. 33, no. 3-4, pp. 199–204, 1986.
  9. A. Yíldíz and U. C. De, “On a type of Kenmotsu manifolds,” Differential Geometry—Dynamical Systems, vol. 12, pp. 289–298, 2010. View at Zentralblatt MATH
  10. K. Yano and M. Kon, Structures on Manifolds, vol. 3 of Series in Pure Mathematics, World Scientific, Singapore, 1984.
  11. G. P. Pokhariyal and R. S. Mishra, “Curvature tensors and their relativistic significance. II,” Yokohama Mathematical Journal, vol. 19, no. 2, pp. 97–103, 1971. View at Zentralblatt MATH
  12. L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, NJ, USA, 1949.